Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:55:37.820Z Has data issue: false hasContentIssue false

Mineralogy of atmospheric dust impacting the Rio Tinto mining area (Spain) during episodes of high metal deposition

Published online by Cambridge University Press:  05 July 2018

J. C. Fernández-Caliani*
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain Unidad Asociada al CSIC Contaminación Atmosférica , Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain
J. D. de la Rosa
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain Unidad Asociada al CSIC Contaminación Atmosférica , Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain
A. M. Sánchez de la Campa
Affiliation:
Unidad Asociada al CSIC Contaminación Atmosférica , Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain
Y. González-Castanedo
Affiliation:
Unidad Asociada al CSIC Contaminación Atmosférica , Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain
S. Castillo
Affiliation:
Unidad Asociada al CSIC Contaminación Atmosférica , Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva, Campus de El Carmen s/n, 21071-Huelva, Spain
*

Abstract

This study is the first to investigate the mineral composition of the atmospheric particulate matter deposited at Rio Tinto, Spain, an historical mining district of world-class importance, with emphasis on metal-bearing particles and their environmental implications. The dustfall is composed of quartz, feldspars, phyllosilicates (mica, chlorite and/or kaolinite) and a variety of accessory heavy minerals, the most common being primary sulfides (pyrite, chalcopyrite with minor galena, sphalerite and bornite) and their oxidation products (notably goethite, hematite and jarosite). This mineral assemblage suggests a local source of wind-blown dust and it is consistent with the large deposition levels of sulfide-related elements (As, Bi, Cd, Cu, Pb, Sb and Zn) registered at the sampling site adjacent to the mine waste dumps. However, the generation of potentially harmful dust particles is not restricted to mine wastes. Anthropogenic metallic compounds arising from a nearby hazardous waste disposal centre can make a relevant additional contribution to the metal deposition, particularly for Fe, Ni, Cr and Mn. Atmospheric fallout is a major mechanism for metal input to soils and plants around or near the mining area.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azimi, S., Ludwig, A., Thévenot, D.R. and Colin, J.L. (2003) Trace metal determination in total atmospheric deposition in rural and urban areas. Science of the Total Environment, 308, 247256 CrossRefGoogle ScholarPubMed
Castillo, S., De la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-Caliani, J.C., Gonzá lez, I. and Romero, A. (2013) Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Science of the Total Environment, 449, 363372 CrossRefGoogle Scholar
Chopin, E.I.B. and Alloway, B.J. (2007a) Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva,, SW Spain. Science of the Total Environment, 373, 488500 CrossRefGoogle Scholar
Chopin, E.I.B. and Alloway, B.J. (2007b) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt,, SW Spain. Water Air and Soil Pollution, 182, 245261 CrossRefGoogle Scholar
Csavina, J., Field, J., Taylor, M.P., Gao, S., Landázuri, A., Betterton, E.A. and Eduardo, A. (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 5873 CrossRefGoogle ScholarPubMed
Fernández-Caliani, J.C. and Barba-Brioso, C. (2010) Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain). Journal of Hazardous Materials, 181, 817826 CrossRefGoogle Scholar
Fernández-Caliani, J.C. and Galán, E. (1996) Impacto ambiental de la minería en el devenir histo´rico de la comarca de Riotinto (Huelva). Geogaceta, 20, 11681169 Google Scholar
Fernández-Caliani, J.C., Barba-Brioso, C., Gonzalez, I. and Galán E. (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air and Soil Pollution, 200, 211226 CrossRefGoogle Scholar
Fernández-Remolar, D.C., Prieto-Ballesteros, O., Go´mez-Ortiz, D., Fernández-Sampedro, M., Sarrazin, P., Gailhanou, M. and Amils, R. (2011) Rio Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathways of phyllosilicates on Mars. Icarus, 211, 114138 CrossRefGoogle Scholar
Galán, E., Go´mez-Ariza, J.L., González, I., Fernández- Caliani, J.C., Morales, E. and Giráldez, I. (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409421 CrossRefGoogle Scholar
García-Palomero, F. (1980) Caracteres Geolo´gicos y Relaciones Morfolo´gicas y Genéticas de los Yacimientos del Anticlinal de Riotinto. Instituto de Estudios Onubenses, Diputacio´n Provincial de Huelva.Google Scholar
Golomb, D., Ryan, D., Eby, N., Underhill, J. and Zemba S. (1997) Atmospheric deposition of toxic onto Massachusetts Bay – I. Metals. Atmospheric Environment, 31, 13491359 CrossRefGoogle Scholar
Kahle, M., Kleber, M. and Reinhold, J. (2002) Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 109, 191205 CrossRefGoogle Scholar
Lo´pez, M., González, I. and Romero, A. (2008) Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt,, SW Spain). Environmental Geology, 54, 805818 CrossRefGoogle Scholar
Lottermoser, B.G. (2005) Evaporative mineral precipitates from a historical smelting slag dump, Rio Tinto, Spain. Neues Jahrbuch fur Mineralogie, 181, 183190 CrossRefGoogle Scholar
Lot termoser, B.G. (2010) Mine Was tes . Characterization, Treatment, Environmental Impacts 3rd Edition, Springer-Verlag, Berlin.Google Scholar
Madejo´n, P., Barba-Brioso, C., Lepp, N.W. and Fernández-Caliani, J.C. (2011) Traditional agricultural practices enable sustainable remediation of highly polluted soils in Southern Spain for cultivation of food crops. Journal of Environmental Management, 92, 18281836 CrossRefGoogle Scholar
Meza-Figueroa, D., Maier, R.M., De la O-Villanueva, M., Gomez-Alvarez, A., Moreno-Zazueta, A., Rivera J., Campillo A., Grandlic C.J., Anaya R., and Palafox-Reyes J. (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere, 77, 140147 CrossRefGoogle Scholar
Moreno, T., Oldroyd, A., McDonald, I. and Gibbons, W. (2007) Preferential fractionation of trace metalsmetalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water Air and Soil Pollution, 179, 93105 CrossRefGoogle Scholar
Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Pp. 3756 in: Acid Sulfate Weathering (Kittrick, J.A., Fanning, D.S. and Hossner, L.R., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Plumlee, G.S. and Morman, S.A. (2011) Mine wastes and human health. Elements, 7, 399404 CrossRefGoogle Scholar
Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G. and Puig, O. (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmospheric Environment, 35, 64076419 CrossRefGoogle Scholar
Rasmussen, P.E. (1998) Long-range atmospheric transport of trace metals: the need for geoscience perspectives. Environmental Geology, 33, 96108 CrossRefGoogle Scholar
Roberts, R.D. and Johnson, M.S. (1978) Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environmental Pollution, 16, 293310 CrossRefGoogle Scholar
Romero, A., González, I. and Galán E. (2006) Estimation of potential pollution of waste mining dumps at Pen˜a de Hierro (Pyrite Belt,, SW Spain) as a base for future mitigation actions. Applied Geochemistry, 21, 10931108 CrossRefGoogle Scholar
Romero, A., González, I. and Galán, E. (2012) Trace elements absorption by citrus in a heavily polluted mining site. Journal of Geochemical Exploration, 113, 7685 CrossRefGoogle Scholar
Salkield, L.U. (1987) A Technical History of the Rio Tinto Mines. Some Notes on Exploitation from Pre- Phoenician Times to the 1950s. Institution of Mining and Metallurgy, London.Google Scholar
Sánchez de la Campa, A.M., De la Rosa, J.D., Fernández-Caliani, J.C. and González-Castanedo, Y. (2011) Impact of abandoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belt). Environmental Research, 111, 10181023 CrossRefGoogle Scholar
Zota, A.R., Willis, R., Jim, R., Norris, G.A., Shine, J.P., Duvall, R.M., Schaider, L.A. and Spengler, J.D. (2009) Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. Journal of the Air & Waste Management Association, 59, 13471357 CrossRefGoogle ScholarPubMed