Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:06:29.021Z Has data issue: false hasContentIssue false

Mineralogical controls on the distribution of trace elements in metasomatized peridotite enclaves from Planany, Czech Republic

Published online by Cambridge University Press:  05 July 2018

J. V. Owen*
Affiliation:
Department of Geology, Saint Mary’s University, Halifax, Nova Scotia, Canada B3H 3C3
J. Dostal
Affiliation:
Department of Geology, Saint Mary’s University, Halifax, Nova Scotia, Canada B3H 3C3
M. Fisera
Affiliation:
Department of Mineralogy and Petrology, National Museum, Vaclavske namesti 68, Prague, Czech Republic

Abstract

Small (m-scale) peridotite enclaves at Planany (central Czech Republic) are separated from their gneissic host rocks by a narrow (cm-scale) reaction rim comprising an inner, tremolite + phlogopite zone and an outer, essentially monomineralic phlogopite zone. Both retain an Mg# very similar to that of the peridotite (Mg# = 81), but relative to this reference frame, show large increases in LILE (K, Rb, Ba) and radionuclides (U, Th). On a smaller scale, however, there has been a mineralogically-controlled decoupling of various components, particularly among the HFSE and REE, the former favouring the phlogopite-rich outer layer of the reaction rim, the latter the amphibole-rich inner zone. Taken together, however, the reaction zones preserve key compositional features of their inferred protolith.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayer, J.A. and Davis, D.W. (1997) Neoarchean evolution of differing convergent margin assemblages in the Wabigoon Subprovince: geochemical and geochronological evidence from the Lake of the Woods greenstone belt, Superior Province, Northwestern Ontario. Precambrian Research, 81, 155–178.CrossRefGoogle Scholar
Beard, B.L., Medaris, L.G., Johnson, CM., Brueckner, K. H. and Mísař, Z. (1992) Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology, 111, 468–483.CrossRefGoogle Scholar
Beard, B.L., Medaris, L.G., Johnson, CM., Brueckner, K. H. and Mísař, Z. (1992) Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology, 111, 468–483.CrossRefGoogle Scholar
Becker, H. (1996) Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from lower Austria. Journal of Petrology, 37, 785–810.CrossRefGoogle Scholar
Becker, H. (1997) Petrological constraints on the cooling history of high-temperature garnet peridotite massifs in lower Austria. Contributions to Mineralogy and Petrology, 128, 2272–286.CrossRefGoogle Scholar
Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V. and Finger, LW. (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya xenoliths. Contributions to Mineralogy and Petrology, 128, 228–246.CrossRefGoogle Scholar
Brueckner, H.K. (1998) Sinking intrusion model for the emplacement of garnet-bearing peridotites into continent collision orogens. Geology, 26, 631–634.2.3.CO;2>CrossRefGoogle Scholar
Brueckner, H.K. and Medaris, L.G. (2000) A general model for the intrusion and evolution of ‘mantle’ garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. Journal of Metamorphic Geology , 18, 123–133.CrossRefGoogle Scholar
Carbno, G.B. and Canil, D. (2002) Mantle structure beneath the SW Slave Craton, Canada: Constraints from garnet geochemistry in the Drybones Bay kimberlite. Journal of Petrology, 43, 129–142.CrossRefGoogle Scholar
Carswell, D.A. (1986) The metamorphic evolution of Mg-Cr type Norwegian garnet peridotites. Lithos, 19, 279–297.CrossRefGoogle Scholar
Carswell, D.A., Curtis, CD. and Kanaris-Sotiriou, R. (1974) Vein metasomatism in peridotite at Kalskaret near Tafjord, South Northway. Journal of Petrology, 15, 383–402.CrossRefGoogle Scholar
Dostal, J. and Fratta, M. (1977) Trace element geochemistry of a Precambrian diabase dike from Western Ontario. Canadian Journal of Earth Sciences, 14, 2941–2944.CrossRefGoogle Scholar
Dostal, J., Baragar, W.R.A. and Dupuy, C (1986) Petrogenesis of the Natkusiak continental basalts, Victoria Island, N.W.T. Canadian Journal of Earth Sciences, 23, 622–632.CrossRefGoogle Scholar
Evans, BW. and Trommsdorff, V. (1978) Petrogenesis of garnet lherzolite, Cima Di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40, 333–348.CrossRefGoogle Scholar
Fisera, M. (1977) Geologie a petrografie kutnohorskeho krystalinika zapadne od Kolina. Vyzkumne Prace Ustredniho Ustavu Geologickeho, 16, 19–31.(in Czech).Google Scholar
Fisera, M. (1981) Geologicke a petrograficke pomery okoli Planan. Vyzkumne Prace Ustredniho Ustavu Geologickeho, 26, 1–42. (in Czech).Google Scholar
Foster, C.T. (1981) A thermodynamic model of mineral segregations in the lower sillimanite zone near Rangeley, Maine. American Mineralogist, 66, 260–277.Google Scholar
Franke, W. (1989) Tectonostratigraphic units in the Variscan belt of the central Europe. Geological Society of America , Special Paper 230, 67–90.Google Scholar
Gayk, T. and Kleinschrodt, R. (2000) Hot contacts of garnet peridotites in middle/upper crustal levels: new constraints on the nature of the late Variscan high-IY low-P event in the Moldanubian (Central Vosges/NE France). Journal of Metamorphic Geology, 18, 293–305.CrossRefGoogle Scholar
Godard, G., Martin, S., Prosser, G., Kienast, J.R. and Morten, L. (1996) Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics, 259, 313–341.CrossRefGoogle Scholar
Grant, J.A. (1986) The isocon diagram–a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81, 1976–1982.CrossRefGoogle Scholar
Greenough, J.D. (1988) Minor phases in the Earth's mantle: evidence from trace and minor element patterns in primitive alkaline magmas. Chemical Geology, 69, 177–192.CrossRefGoogle Scholar
Jamtveit, B. (1987) Metamorphic evolution of the Eiksunddal eclogite complex, Western Norway, and some tectonic implications. Contributions to Mineralogy and Petrology, 95, 82–99.CrossRefGoogle Scholar
Joesten, R. (1991) Local equilibrium in metasomatic processes revisited: Diffusion-controlled growth of chert nodule reaction rims in dolomite. American Mineralogist, 76, 743–755.Google Scholar
Kalt, A. and Altherr, R. (1996) Metamorphic evolution of garnet-spinel peridotites from the Variscan Schwarzwald (Germany). Geologische Rundschau, 85, 211–224.CrossRefGoogle Scholar
Kanaris-Sotiriou, R. and Angus, N.S. (1979) Metasomatic reaction between acid pegmatite and orthopyroxenite at Currywangaun, Connemara, Ireland. Mineralogical Magazine, 43, 473–478.CrossRefGoogle Scholar
Katayama, I., Muko, A., Iizuka, T., Maruyama, S., Terada, K., Tsutsumi, Y., Sano, Y., Zhang, R.Y. and Liou, J.G. (2003) Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology, 31, 713–716.CrossRefGoogle Scholar
LeMaitre, R.W. (2002) Igneous Rocks: A Classification and Glossary of Terms. 2nd edition Cambridge University Press, New York, N.Y. 236 pp.CrossRefGoogle Scholar
Massonne, H.-J. and O'Brien, PJ. (2003) The Bohemian Massif and the Himalaya. Pp. 145–187.in: Ultrahigh Pressure Metamorphism (Carswell, D.A. and Compagnoni, R., editors). EMU Notes in Mineralogy, 5, European Mineralogical Union.Google Scholar
Matte, P., Maluski, H., Rajlich, P. and Franke, W. (1990) Terrane boundaries in the Bohemian Massif: Result of large scale Variscan shearing. Tectonophysics, 177, 151–170.CrossRefGoogle Scholar
Medaris, L.G., Wang, H.F., M Mísař, Z. and Jelinek, E. (1990) Thermobarometry, diffusion, modelling and cooling rates of crustal garnet peridotites: two examples from the Moldanubian zone of the Bohemian Massif. Lithos, 25, 189–202.CrossRefGoogle Scholar
Medaris, L.G., Beard, B.L., Johnson, CM., Valley, J.W., Spicuzza, M.J., Jelinek, E. and Mísař, Z. (1995a) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for recycling of subducted lithosphere. Geologische Rundschau , 84, 489–505.CrossRefGoogle Scholar
Medaris, L.G., Jelinek, E. and Mísař, Z. (19956) Czech eclogites: terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. European Journal of Mineralogy, 7, 7–28.CrossRefGoogle Scholar
Medaris, L.G., Fournelle, J.H., Ghent, E.D., Jelinek, E. and Mísař, Z. (1998) Prograde eclogite in the Gfohl Nappe, Czech Republic: new evidence on Variscan high-pressure metamorphism. Journal of Metamorphic Geology, 16, 563–576.CrossRefGoogle Scholar
Miller, C, Thoni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T. and Zanetti, A. (2003) Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66, 155–172.CrossRefGoogle Scholar
Nakamura, D., Svojtka, M., Neamura, K. and Hirajima, T. (2004) Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nove Dvory, Czech republic). Journal of Metamorphic Geology, 22, 593–603.CrossRefGoogle Scholar
Neubauer, F. and Handler, R. (2000) Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate? Mittheilungen der geolo-gischen Gelleschaft Wien , 92, 35–59.Google Scholar
Owen, J.V. (1989) Metasomatically altered amphibolite inclusions in zoned granitic-tonalitic pegmatite near Chicoutimi, Québec. The Canadian Mineralogist, 27, 315–321.Google Scholar
Owen, J.V. (1993) Syn-metamorphic element transfer across lithological boundaries in the Port-aux-Basques gneiss complex, Newfoundland. Lithos, 29, 217–233.CrossRefGoogle Scholar
Owen, J.V., Dostal, J. and Church, B.N. (1994) Mineralogic reaction zones at a calc-silicate/ metapelite interface: an example of trace element mobility in a metamorphic environment. Mineralogical Magazine, 58, 205–214.CrossRefGoogle Scholar
Quick, J.E., Sinigoi, S. and Mayer, A. (1995) Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy. Geology, 23, 739–742.2.3.CO;2>CrossRefGoogle Scholar
Sanford, R.F. (1982) Growth of ultramafic reaction zones in greenschist to amphibolite facies metamorphism. American Journal of Science, 282, 543–616.CrossRefGoogle Scholar
Schmadicke, E. and Evans, B.W. (1997) Garnet-bearing ultramafic rocks from the Erzgebirge, and their relation to other settings in the Bohemian Massif. Contributions to Mineralogy and Petrology, 127, 57–74.Google Scholar
Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systems of oceanic basalts: implications for mantle compositions and processes. Pp. 313–345 in: Magmatism in the Ocean Basins (Saunders, A.A. and Norry, M.J., editors). Special Publication, 42. Geological Society, London.Google Scholar
Tatsumi, Y. (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94, 4697–4707.CrossRefGoogle Scholar
Tatsumi, Y. and Eggins, S. (1995) Subduction Zone megacrysts in granites Magmatism . Blackwell, Oxford, UK, 224 pp.Google Scholar
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution . Blackwell, Oxford, UK, 312 pp.Google Scholar
Tumiati, S., Thoni, M., Nimis, P., Martin, S. and Mair, V. (2003) Mantle-crust interactions duringVariscan subduction in the Eastern Alps (Nonsberg-Ulten zone): geochronology and new petrological constraints. Earth and Planetary Science Letters , 210, 509–526.CrossRefGoogle Scholar
Vernon, R.H. (1986) K-feldspar megacrysts in granites – Phenocrysts, not porphyroblasts. Earth-Science Reviews , 23, 1–63.CrossRefGoogle Scholar
Vernon, R.H. (1996) Observation versus argument by authority – the origin of enclaves in granites. Journal of Geoscience Education , 44, 57–64.CrossRefGoogle Scholar
Yang, J.-J. (2004) Dating of zircon from Ti-clinohumitebearingg arnet peridotite: implication for timingof mantle metasomatism: comment. Geology , 31, 713–716.Google Scholar