Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T12:20:46.072Z Has data issue: false hasContentIssue false

Microstructures of the silicates: key information about mineral reactions and a link with the Earth and materials sciences

Published online by Cambridge University Press:  05 July 2018

A. Baronnet*
Affiliation:
CRMC2-CNRS, Campus Luminy, Case 913, 13288-Marseilles, cedex 9, France
E. Belluso
Affiliation:
DSMP, Universita degli studi di Torino, Via Valberga Caluso, 37, 10125-Torino, Italy
*

Abstract

From a few examples, the first part of this paper discusses the use of transmission electron microscopy in characterizing arrested silicate reaction mechanisms in coherent rocks, including nucleation, crystal growth, and resorption events. Some attention is given to the role of reaction sites and strain. The second part of the paper addresses the wealth of mutual arrangement of serpentine tubules (chrysotile sl) found recently in serpentinite cracks, the result of hydration reactions. It is suggested that their great flexibility of association as fascinating mesostructures may indicate how veins formed and how they were filled. Micro- to nano-cracks might potentially serve as markers of brittle deformation in the submicron range, and therefore might document nanostructural geology. When possible the topological and self-assembly features observed for chrysotile are compared with those reported for graphene nanotubes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C.J., Provost, A. and Jaupart, C. (1981) Oscillatory zoning: a pathological case of crystal growth. Nature, 294, 223228.CrossRefGoogle Scholar
Allen, F.M. (1992) Mineral definition by HRTEM: problems and opportunities. Pp. 289333 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 22. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Amelinckx, S., Luyten, W., Krekels, T., Van Tendeloo, G. and Van Landuyt, J. (1992)) Conical, helically-wound, graphite whiskers: a limiting member of the fullerene? Journal of Crystal Growth, 121, 543558.CrossRefGoogle Scholar
Amelinckx, S., Devouard, B. and Baronnet, A. (1996) Geometrical aspects of the diffraction space of serpentine rolled microstructures: their study by means of electron diffraction and microscopy. Acta Crystallographica, A52, 850878.CrossRefGoogle Scholar
Ashby, M.F. and Jones, D.R.H. (1991) Matériaux. 2: microstructure et mise en oeuvre. Dunod, Paris.Google Scholar
Authier, A. and Zarka, A. (1977) Observation of growth defects in spodumene crystals by X-ray topography. Physics and Chemistry of Minerals, 1, 1526.CrossRefGoogle Scholar
Bard, J.P. (1980) Microtextures des roches magmatiques et métamorphiques. Masson, Paris, 192 pp.Google Scholar
Baronnet, A. (1978) Some aspects of polytypism in crystals. Progress in Crystal Growth and Characterization, 1, 151211. Pergamon Press, Oxford, UK.Google Scholar
Baronnet, A. (1984) Growth kinetics of the silicates: a review of basic concepts. Fortschritte der Mineralogie, 62, 187232.Google Scholar
Baronnet, A. (1992) Polytypism and stacking disorder. Pp. 231288 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 22. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Baronnet, A. (1997) Silicates microstructures at the subatomic scale. Comptes Rendus à l'Académie des Sciences – Paris, t324, série IIa, 157172.Google Scholar
Baronnet, A., Nitsche, S. and Kang, Z.C. (1993) Layer stacking microstructures in a biotite single crystal. A combined HRTEM-AEM study. Phase Transitions, 43, 107128.CrossRefGoogle Scholar
Baronnet, A., Mellini, M. and Devouard, B. (1994) Sectors in polygonal serpentine. A model based on dislocations. Physics and Chemistry of Minerals, 21, 330343.CrossRefGoogle Scholar
Baronnet, A., Devouard, B., Grauby, O. and Belluso, E. (1997) Surfaces of curved layer silicates and inferences on crystal growth and dissolution. Pp. 4955 in: Mineral Surface Reactivity (Putnis, A. and Dove, M.T., editors). EuroConference on the Interaction of Mineral Surfaces with Organic and Inorganic Species in Aqueous Solution: Experiment and Theory. San Feliu de Guixols, Spain.Google Scholar
Bates, R.L. and Jackson, J.A. (1987) Glossary of Geology (third edition). American Geological Institute, 422 pp.Google Scholar
Belluso, E., Compagnoni, R. and Ferraris, G. (1994) Occurence of asbestiform minerals in the serpentinites of the Piemonte Zone, Western Alps. Giornata di Studio in Ricordo del Prof. Stefano Zucchetti, Politecnico di Torino, pp. 5766.Google Scholar
Blenkinsop, T. (2000) Deformation Microstructures and Mechanisms in Minerals and Rocks. Kluwer Academic Press, Dordrecht, The Netherlands, 150 pp.Google Scholar
Blum, A.E. (1994) Determination of illite/smectite particle morphology using scanning force microscopy. Pp. 171202 in: Scanning Probe Microscopy of Clay Minerals. CMS Workshop Lectures, 7. Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Bourgeois, L., Bando, Y., Shinozaki, S., Kurashima, K. and Sato, T. (1999) Boron nitride cones: structure determination by transmission electron microscopy. Acta Crystallographica, A55, 168177.CrossRefGoogle Scholar
Brown, W.L., Becker, S.M. and Parsons, I. (1983) Cryptoperthites and cooling rate in a layer syenite pluton: a chemical and TEM study. Contributions to Mineralogy and Petrology, 82, 1325.CrossRefGoogle Scholar
Buseck, P.R. (1983) Electron microscopy of minerals. American Scientist, March – April, 175185.Google Scholar
Buseck, P.R. and Cowley, J.M. (1983) Modulated and intergrowth structures in minerals and electron microscope methods for their study. American Mineralogist, 68, 1840.Google Scholar
Chisholm, J.E. (1991) Geometrical constraints on the growth of sectors in polygonal serpentine. Journal of Physics, D: Applied Physics, 24, 199202.CrossRefGoogle Scholar
Chisholm, J.E. (1992) The number of sectors in polygonal serpentine. Canadian Mineralogist, 30, 355365.Google Scholar
Corish, J. (1986) Introduction to defects in solids. Pp. 136 in: Defects in Solids – Modern Techniques (Chadwick, A.V. and Terenzi, M., editors). NATO ASI Series B: Physics, 147. Plenum Press, New York.Google Scholar
Cressey, B.A. and Zussman, J. (1976) Electron microscopic studies of serpentinites. Canadian Mineralogist, 14, 307313.Google Scholar
Cressey, B.A. and Whittaker, E.J.H. (1993) Five-fold symmetry in chrysotile asbestos as revealed by transmission electron microscopy. Mineralogical Magazine, 57, 729732.CrossRefGoogle Scholar
Devouard, B. (1995) Structure et croissance cristalline du chrysotile et des serpentines polygonales. Doctorate Thesis, University of Aix-Marseille III, 181 pp.Google Scholar
Devouard, B. and Baronnet, A. (1995) Axial diffraction of curved lattices: geometrical and numerical modeling. Applications to chrysotile. European Journal of Mineralogy, 7, 835846.CrossRefGoogle Scholar
Devouard, B., Baronnet, A., Van Tendeloo, G. and Amelinckx, S. (1997) First evidence of synthetic polygonal serpentines. European Journal of Mineralogy, 9, 539546.CrossRefGoogle Scholar
Dodony, I. (1993) Microstructures in serpentinites. Multinational Congress on Electron Microscopy, Parma, Italy, 14, 249252.Google Scholar
Dodony, I. (1997) Structure of the 30-sectore d polygonal serpentine. A model based on TEM and SAED studies. Physics and Chemistry of Minerals, 24, 3949.Google Scholar
Dove, P.M. and Chermak, J.A. (1994) Mineral-water interactions: fluid cell applications of scanning force microscopy. Pp. 139169 in: Scanning Probe Microscopy of Clay Minerals (Nagy, K.L. and Blum, A.E., editors). CMS Workshop Lectures, 7. Clay Minerals Society, Boulder, Colorado.Google Scholar
Drits, V.A. (1997) Mixed-layer minerals. Pp. 153190 in: Environmental Mineralogy (Vaughan, D.J. and Wogelius, R., editors). EMU Notes in Mineralogy, 2. Eötvös University Press, Budapest.Google Scholar
Frank, F.C. (1951) Crystal dislocations. Elementary concepts and definitions. Philosophical Magazine, 42, 809819.Google Scholar
Friedel, J. (1964) Dislocations. Pergamon Press. 491 pp.Google Scholar
Gogotsi, Y., Libera, J.A., Kalashnikov, N. and Yoshimura, M. (2000) Graphite polyhedral crystals. Science, 290, 317320.CrossRefGoogle ScholarPubMed
Grauby, O., Baronnet, A., Devouard, B., Schoumacker, K. and Demirdjian, L. (1998) The chrysotile-polygonal serpentine-lizardite suite synthesized from a 3MgO-2SiO2-excess H2O gel. The 7th International Symposium on Experimental Mineralogy, Petrology and Geochemistry, April 1998, Orléans, France. Abstract supplement no. 1 to Terra Nova, Volume 10, 24.Google Scholar
Grigor'ev, D.P. (1965) Ontogeny of Minerals. Israel Program for Scientific Translations Ltd, Monson, S., Jerusalem. 250 pp.Google Scholar
Guggenheim, S. and Eggleton, R.A. (1988) Crystal chemistry, classification and identification of modulated layer silicates. Pp. 675725 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Haasen, P. (1986) Physical Metallurgy (second edition). Cambridge University Press, Cambridge, UK, 392 pp.Google Scholar
Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354, 5658.CrossRefGoogle Scholar
Iijima, S. and Buseck, P.R. (1978) Experimental study of disordered mica structures by high resolution electron microscopy. Acta Crystallographica, A34, 709719.CrossRefGoogle Scholar
Klapper, H. (1972) Elastische Energie und Forzugsrichtungen geradlinien Verzetzungen in aus der Lösung gewachsenen organischen Kristallen. I. Benzil. Physica Statu Solidi (A), 14, 99106.CrossRefGoogle Scholar
Le Gleuher, M., Livi, K.J.T., Veblen, D.R., Amouric, M. and Noack, Y. (1990) Serpentinization of enstatite from Pernes, France: reaction microstructures and the role of system openness. American Mineralogist, 75, 813824.Google Scholar
Loomis, T.P. (1983) Compositional zoning of crystals: a record of growth and reaction history. Pp. 160 in: Kinetics and Equilibrium in Mineral Reactions. Advances in Physical Geochemistry, Vol. 3 (Saxena, S.K., editor). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Mellini, M. (1989) High resolution transmission electron microscopy and geology. Advances in Electronics and Electron Physics, 76, 281326.CrossRefGoogle Scholar
Mellini, M., Ferraris, G. and Compagnoni, R. (1985) Carlosturanite: HRTEM evidence of a polysomatic series including serpentine. American Mineralogist, 70, 773781.Google Scholar
Merlino, S., editor (1997) Modular Aspects of Minerals. Eötvös University Press, Budapest, 450 pp.Google Scholar
Middleton, A.P. and Whittaker, E.J.W (1976) The structure of Povlen-type chrysotile. Canadian Mineralogist, 14, 301306.Google Scholar
Nagy, K.L. and Blum, A.E., editors (1994) Scanning Probe Microscopy of Clay Minerals. CMS Workshop Lectures, 7. Clay Minerals Society, Boulder, Colorado, 239 pp.Google Scholar
Nespolo, M., Takeda, H., Ferraris, G. and Kogure, T. (1997) Composite twins of 1M mica: derivation and identification. Mineralogical Journal (Japan), 19, 173186.CrossRefGoogle Scholar
Nicolas, A. and Poirier, J.P. (1976) Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. Wiley-Interscience, London.Google Scholar
Nord, G.L. Jr. (1992) Imaging transformation-induced microstructures. Pp. 455508 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 27. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
O'Hanley, D.S. (1996) Serpentinites. Records of Tectonic and Petrological History. Oxford University Press, Oxford, UK, 277 pp.Google Scholar
Papp, G. (1990) A review of the multi-layer lizardite polytypes. Annals of the Natural History National Museum, Hungary, 82, 917.Google Scholar
Putnis, A. (1992) Introduction to Mineral Sciences. Oxford University Press, Oxford, UK, 457 pp.CrossRefGoogle Scholar
Reeder, R.J. and Prosky, J.L. (1986) Compositional sector zoning in dolomite. Journal of Sedimentary Petrology, 56, 237247.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Monograph 5, The Mineralogical Society, London.Google Scholar
Rieder, M. (1970) Lithium-iron micas from the Krusné Hory Mountains (Erzgebirge): twins, epitactic over-growths and polytypes. Zeitschrift für Kristallographie, 132, 161184.CrossRefGoogle Scholar
Robinson, P., Ross, M., Nord, G.L., Smyth, J.R. and Jaffe, H.W. (1977) Exsolution lamellae in augite and pigeonite: fossil indicators of lattice parameters at high temperature and pressure. American Mineralogist, 62, 857873.Google Scholar
Roedder, E., editor (1984) Fluid Inclusions. Reviews in Mineralogy, 12. Mineralogical Scoiety of America, Washington, D.C., 644 pp.CrossRefGoogle Scholar
Scandale, E., Scordari, F. and Zarka, A. (1979) Etudes des défauts dans des monocristaux de béryl. I. Observation des dilocations. II. Etude de croissance. Journal of Applied Crystallography, 12, 7077; 78-83.CrossRefGoogle Scholar
Schock, R.N., editor (1984) Point Defects in Minerals. Geophysical Monograph 31, Mineral Physics 1, American Geophysical Union, 232 pp.Google Scholar
Sebastian, M.T. and Krishna, P. (1987) Single crystal diffraction studies of stacking faults in close-packed structures. Progress in Crystal Growth and Characterization, 14, 103183.CrossRefGoogle Scholar
Sunagawa, I. (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bulletin de Minéralogie, 104, 8187.CrossRefGoogle Scholar
Sunagawa, I. (1987) Morphology of minerals. Pp. 509587 in: Morphology of Crystals. Part B (Sunagawa, I., editor). Terra Scientific Publishing Company, Tokyo.Google Scholar
Sunagawa, I. and Bennema, P. (1982) Morphology of growth spirals, theoretical and experimental. Pp. 1129 in: Preparation and Properties of Solid State Materials, vol. 7 (Wilcox, W.R., editor). Marcel Dekker Inc., New York.Google Scholar
Sunagawa, I. and Urano, A. (1999) Beryl crystals from pegmatites: morphology and mechanism of crystal growth. Journal of Gemmology, 26, 521533.CrossRefGoogle Scholar
Thompson, J.B. Jr. (1978) Biopyriboles and polysomatic series. American Mineralogist, 63, 239249.Google Scholar
Thompson, J.B. Jr. (1981) An introduction to the mineralogy and petrology of the biopyriboles. Pp. 141188 in: Amphiboles and other Hydrous Pyriboles: Mineralogy (Veblen, D.R., editor). Reviews in Mineralogy, 9A. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Tilley, R.J.D. (1979) The crystal chemistry of some tungsten oxides containing crystallographic shear planes. Chemica Scripta, 14, 147159.Google Scholar
Urai, J.L., Williams, P.F. and Van Roermund, H.L.M. (1991) Kinematics of crystal growth in syntectonic microveins. Journal of Structural Geology, 13, 823836.CrossRefGoogle Scholar
Veblen, D.R. (1981) Non-classical pyriboles and polysomatic reactions in biopyriboles. Pp. 189236 in: Amphiboles and other Hydrous Pyriboles: Mineralogy (Veblen, D.R., editor). Reviews in Mineralogy, 9A. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Veblen, D.R. (1991) Polysomatism and polysomatic series: A review and applications. American Mineralogist, 76, 801826.Google Scholar
Veblen, D.R. and Wylie, A.G. (1993) Mineralogy of amphiboles and 1:1 layer silicates. Pp. 61137 in: Health Effects of Mineral Dusts (Guthrie, G.D. and Mossman, B.T., editors). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Verma, A.R. and Krishna, P. (1966) Polymorphism and Polytypism in Crystals. Wiley, New York, 341 pp.Google Scholar
Whittaker, E.J.W., Cressey, B.A. and Hutchison, J.L. (1981) Terminations of multiple-chain lamellae in grunerite asbestos. Mineralogical Magazine, 44, 2735.CrossRefGoogle Scholar
Wicks, F.J. and O'Hanley, D.S. (1988) Serpentine minerals: structures and petrology. Pp. 91167 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Wicks, F.J., Henderson, G.S. and Vrdoljak, G.A. (1994) Atomic and molecular scale imaging of layered and other mineral structures. Pp. 91138 in: Scanning Probe Microscopy of Clay Minerals. CMS Workshop Lectures, 7. Clay Minerals Society, Boulder, Colorado.Google Scholar
Yada, I. and Iishi, K. (1974) Serpentine minerals hydrothermally synthesized and their microstructures. Journal of Crystal Growth, 24/25, 627630.CrossRefGoogle Scholar
Yada, I. and Iishi, K. (1977) Growth and microstructure of synthetic chrysotile. American Mineralogist, 62, 958965.Google Scholar
Yada, I. and Liu, W. (1987) Polygonal microstructures of Povlen chrysotile observed by high resolution electron microscopy. Proceedings of the Sixth Meeting of the European Clay Group, 596597.Google Scholar