Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T13:08:00.044Z Has data issue: false hasContentIssue false

Microstructures and mineral chemistry in amphibolites from the western Tauern Window (Eastern Alps), and P-T deformation paths of the Alpine greenschist-amphibolite facies metamorphism

Published online by Cambridge University Press:  05 July 2018

Bernhard Schulz
Affiliation:
Institut für Geologie und Mineralogie der Universität, Schloßgarten 5, D-91054 Erlangen, Germany
Claude Triboulet
Affiliation:
Laboratoire de Pétrologie Minéralogique, C.N.R.S. U.R.A. 736, Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
Claude Audren
Affiliation:
Géosciences Rennes, Laboratoire Tectonophysique, Institut de Géologie, Avenue du Général Leclerc, F-35042 Rennes Cedex, France

Abstract

Amphibolites in the Mesozoic part of the parautochthonous Lower Schieferhülle (LSH), the allochthonous Upper Schieferhülle (USH) and the overlying Austroalpine basement (AA) in and around the western Tauern Window (Eastern Alps) suffered a progressive Alpine deformation. Lineations and foliations L1-S1, L2-S2 defined by preferentially oriented (Na-Ca) amphiboles as well as F3 folds and further foliations Smyl and S4 in the metabasites are structures of successive deformational stages with a constant W-E main extension axis of strain. The (Na-Ca) amphiboles in assemblages with epidote, chlorite, albite/oligoclase and quartz are zoned with similar continuous zonation trends from early actinolite in the cores to magnesio-hornblende and tschermakitic hornblende, and from magnesio-hornblende to late actinolite in the rims in the three lithostratigraphic units. Geothermobarometry involving tremolite-edenite and (pargasite-hastingsite)-tremolite end-member equilibria in amphiboles allowed us to reconstruct prograde-retrograde P-T paths for the Alpine greenschist-amphibolite facies event. The paths passed P/Tmax at 6–7 kbar/600°C. Similar shapes of the paths in AA, USH and Mesozoic LSH indicate a common metamorphic history and a stacking of these units prior to or during the pre-Pmax evolution. Moderate P-T ratios are characteristic for the temperature-dominated compression paths and indicate continental collisional rather than subduction zone metamorphism. The middle to late Alpine greenschist-amphibolite facies event appears as an independent metamorphism along a complete P-T loop which may have followed an earlier and poorly documented high-pressure/low-temperature event.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, J.P. (1970) Compositions of hornblendes during the Hercynian progressive metamorphism of the Aracene metamorphic belt (SW Spain). Contrib. Mineral. Petrol, 28, 117–34.CrossRefGoogle Scholar
Behrmann, J.H. (1990) Zur Kinematik der Kontinentkollision in den Ostalpen. Geotektonische Forschungen, 76, 1–180.Google Scholar
Blankenburg, F. von, Villa, I.M., Baur, H., Morteani, G. and Steiger, R.H. (1989) Time calibration of a PT-path from the western Tauern Window, Eastern Alps: the problem of closure temperatures. Contrib. Mineral. Petrol, 101, 1–11.CrossRefGoogle Scholar
Borsi, S., Del Moro, A., Sassi, F.P., Zanferrari, A. and Zirpoli, G. (1978) New geopetrologic and radio-metric data on the Alpine history of the Austridic continental margin south of the Tauern Window. Mem. 1st. Geol Min. Univ. Padova, 32, 1–17.Google Scholar
Boyd, F.R. (1954) Amphiboles. Carnegie Inst. Washington Year., 53, 108-11; Washington.Google Scholar
Brown, E.H. (1977) The crossite content of Ca-amphibole as a guide to pressure of metamorphism. J. Petrol, 18, 53–72.CrossRefGoogle Scholar
Christensen, J.N., Selverstone, J., Rosenfeld, J.L. and DePaolo, DJ. (1994) Correlation by Rb-Sr geochro-nology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps. Contrib. Mineral. Petrol, 118, 1–12.CrossRefGoogle Scholar
Colombi, A. (1989) Metamorphisme et geochimie des roches mafiques des Alpes ouest-centrales (geoprofil Viege-Domodossola-Locarno). Memoires de Geologie, 4, 1–216. Lausanne.Google Scholar
Dachs, E. (1990) Geothermobarometry in metasedi-ments of the southern Grossvenediger area (Tauern Window, Austria). J. Metam. Geol, 8, 217–30.CrossRefGoogle Scholar
Dachs, E., Frasl, G. and Hoinkes, G. (1991) Mineralogisch-petrologische Exkursion ins Penninikum des Tauernfensters und in das Otztalkristallin. Euro. J. Mineral, 3, 79–110.Google Scholar
De Vecchi, G. (1989) Metaophiolitic suite in the southwestern Tauern Window (Italian sector). Mem. Sci. Geol, 41, 51-9 (Padova).Google Scholar
De Vecchi, G. and Baggio, P. (1982) The Pennine zone of the Vizze region in the western Tauern Window (Italian Eastern Alps). Boll. Soc. Geol. ItaL, 101, 89–116.Google Scholar
De Vecchi, G. and Mezzacasa, G. (1986) The Pennine basement and cover units in the Mesule Group (south-western Tauern Window). Mem. Sci. Geol., 38, 365-92 (Padova).Google Scholar
Frank, W., H6ck, V. and Miller, C. (1987) Metamorphic and tectonic history of the Central Tauern Window. In Geodynamics of the Eastern Alps (Fliigel, H.W. and Faupl, P., eds.), 34–54. Franz Deuticke Verlag, Vienna.Google Scholar
Frisch, W. (1976) Ein Modell zur alpidischen Evolution und Orogenese des Tauernfensters. Geol. Rundsch., 65, 375–93.CrossRefGoogle Scholar
Frisch, W. (1980) Post-Hercynian formations of the western Tauern Window: Sedimentological features, depositional environment, and age. Mitt. Osterr. Geol. Ges., 71/72, 49–63.Google Scholar
Frisch, W. (1984): Metamorphic history and geochemistry of a low-grade amphibolite in the Kaserer formation (marginal Biindner Schiefer of the western Tauern Window, the Eastern Alps). Schweiz. Mineral. Petrogr. Mitt., 64, 193–214.Google Scholar
Fry, N. (1973) Lawsonite pseudomorphed in Tauern greenschist. Mineral. Mag., 39, 121–22.CrossRefGoogle Scholar
Grapes, R.H., Hashimoto, S. and Miyashita, S. (1977) Amphiboles of a metagabbro-amphibolite sequence, Hiddaka metamorphic belt, Hokkaido. J. Petrol, 18, 285–319.CrossRefGoogle Scholar
Grundmann, G. and Morteani, G. (1985) The young uplift and thermal history of the central Eastern Alps (Austria/Italy), evidence from apatite fission track ages. Jahrb. Geol. B.-A., 128, 197–216.Google Scholar
Hammerschmidt, K. (1981) Isotopengeologische Untersuchungen am Augengneis vom Typ Campo Tures bei Rain in Taufers, Sildtirol. Mem. 1st. Geol. Min. Univ. Padova, 34, 273–300.Google Scholar
Harte, B. and Graham, CM. (1975) The graphical analysis of greenschist to amphibolite facies mineral assemblages in metabasites. J. Petrol, 16, 347–70.CrossRefGoogle Scholar
Hock, V. (1969) Zur Geologie des Gebietes zwischen Tuxer Joch und Olperer (Zillertal, Tirol). Jahrb. Geol. B.-A., 112, 163–95.Google Scholar
Hock, V. (1980) Distribution maps of minerals of the Alpine metamorphism in the Penninic Tauern Window, Austria. Mitt. Osterr. Geol. Ges., 71/72, 119-27.Google Scholar
Hock, V. (1981) Ophiolitic and non-ophiolitic metabasic rocks in the Penninic zone of the Hohe Tauern (Eastern Alps, Austria). Ofioliti, 6, 1–23.Google Scholar
Hock, V. and Miller, Ch. (1987) Mesozoic ophiolitic sequences and non-ophiolitic metabasites in the Hohe Tauern. In Geodynamics of the Eastern Alps (Fliigel, W.H. and Faupl, P., eds), 16–33. Franz Deuticke Verlag, Vienna.Google Scholar
Hock, V. and Hoschek, G. (1980) Metamorphism of calcareous metasediments in the Hohe Tauern, Austria. Mitt. Osterr. Geol. Ges., 71/72, 99–118.Google Scholar
Hoernes, S. and Friedrichsen, H. (1974) Oxygen isotope studies on metamorphic rocks of the western Tauern Window area (Austria). Schweiz* Mineral. Petrogr. Mitt., 54, 769–88.Google Scholar
Hofmann, K.H., Kleinschrodt, R., Lippert, R., Mager, D. and Stockhert, B. (1983) Geologische Karte des Altkristallins siidlich des Tauernfensters zwischen Pfunderer Tal und Tauferer Tal (Siidtirol). Der Schlern, 57, 572-90, 1 Kt.; Bozen (Athesia Verlag).Google Scholar
Holland, T.J.B. (1979) High water activities in the generation of high pressure kyanite eclogites in the Tauern Window, Austria. J. Geology, 87, 1–17.CrossRefGoogle Scholar
Holland, T.J.B. and Ray, N.J. (1985) Glaucophane and pyroxene breakdown reactions in the Pennine units of the Eastern Alps. J. Metam. Geoi, 3, 417–38.CrossRefGoogle Scholar
Holland, T.J.B. and Richardson, S.W. (1979) Amphibole zonation in metabasites as a guide to the evolution of metamorphic conditions. Contrib. Mineral. Petrol., 70, 143–48.CrossRefGoogle Scholar
Kleinschrodt, R. (1987) QuarzkorngefOgeanalyse im Altkristallin siidlich des westlichen Tauernfensters (Slidtirol/Italien). Erlanger geol. Abh., 114, 1–82.Google Scholar
Laird, J. and Albee, A.L. (1981) Pressure, temperature, and time indicators in mafic schists: their application to reconstructing the polymetamorphic history of Vermont. Am. J. Sci., 281, 127–75.CrossRefGoogle Scholar
Lammerer, B. (1986) Das Autochthon im westlichen Tauernfenster. Jahrb. Geol. B.-A., 9, 51–67.Google Scholar
Lammerer, B. (1988) Thrust-regime and transpression regime tectonics in the western Tauern Window (Eastern Alps). Geol. Rundsch., 77, 143–56.CrossRefGoogle Scholar
Lammerer, B. and Morteani, G. (1990) Exkursionsfiihrer Schlegeis und Pfitscher Joch, Zillertaler Alpen, MINPET 90, Neukirchen am GroBvenediger. Mitt. Osterr. Mineral. Ges., 135, 185–97.Google Scholar
Lammerer, B., Schmidt, K. and Stadler, R. (1981) Zur Stratigraphie und Genese der penninischen Gesteine des siidwestlichen Tauernfensters. N. Jb. Geol. Paldont. Mh., 11, 678–96.Google Scholar
Leake, B.E. (1965) The relationship between tetrahedral aluminium and the maximum possible octahedral aluminium in natural calciferous and subcalciferous amphiboles. Amer. Mineral., 50, 843–54.Google Scholar
Leake, B.E. (1978) Nomenclature of amphiboles. Mineral. Mag., 42, 533–63.CrossRefGoogle Scholar
Miller, Ch. (1977) Chemismus und phasenpetrologische Untersuchungen der Gesteine der Eklogitzone des Tauernfensters. Tschermaks Mineral. Petrogr. Mitt., 24, 221-77.CrossRefGoogle Scholar
Miller, Ch., Satir, M. and Frank, W. (1980) High-pressure metamorphism in the Tauern Window. Mitt. Osterr. Geol. Ges., 71/72, 89–97.Google Scholar
Morteani, G. (1971) Gliederung und Metamorphose der Serien zwischen Stilluptal und Schlegeistal. Verh. Geol. B.-A., 287-314.Google Scholar
Morteani, G. (1974) Petrology of the Tauern Window, Austrian Alps. Fortschr. Mineral, 52, 195–220.Google Scholar
Nollau, G. (1969) Kleintektonische Strukturen am SUdrand des Tauernfensters und ihre Einbeziehung in groBtektonische Konzepte. Geol. Rundsch., 58, 755–88.CrossRefGoogle Scholar
Oehlke, M., Weger, M. and Lammerer, B. (1993) The “Hochfeiler Duplex” — imbrication tectonics in the SW Tauern Window. Abh. Geol. B.-A., 49, 107–24.Google Scholar
Papike, J.J. (1974) On the chemistry of clinoamphiboles. EOS Trans. Geophys. Union, 55, 469.Google Scholar
Papike, J.J., Cameron, K.C. and Baldwin, K. (1974) Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimate of ferric iron from microprobe data. Geol. Soc. Abstr. Progr., 6, 1053.Google Scholar
Puga, E., Diaz De Federico, A., Fediukova, E., Bondi, M. and Morten, L. (1989) Petrology, geochemistry and metamorphic evolution of the ophiolitic eclogites and related rocks from the Sierra Nevada (Betic Cordilleras, Southeastern Spain). Schweiz. Mineral. Petrogr. Mitt., 69, 435–55.Google Scholar
Raase, P. (1974) Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contrib. Mineral. Petrol., 45, 231–236.CrossRefGoogle Scholar
Raith, M., Hormann, P.K. and Abraham, K. (1977) Petrology and metamorphic evolution of the Penninic ophiolites in the western Tauern Window (Austria). Schweiz. Mineral. Petrogr. Mitt., 57, 187–232.Google Scholar
Raith, M., Mehrens, C. and Thole, W. (1980) Gliederung, tektonischer Bau und metamorphe Entwicklung der penninischen Serien im stidlichen Venediger-Gebiet, Osttirol. Jahrb. Geol. B.-A., 123, 1–37.Google Scholar
Raith, M., Raase, P., Kreuzer, H. and Mtiller, P. (1978) The age of the Alpidic metamorphism in the Western Tauern Window, Austrian Alps, according to radio-metric dating. In Alps, Apennines, Hellenides (Closs, H., Roeder, D.H. and Schmidt, K., eds), 140-8.Google Scholar
Sander, B. (1912) Uber einige Gesteinsgruppen des Tauemwestendes. Jahrb. k. u. k. geol. Reichsanst., 70 (3/4), 273-96.Google Scholar
Sander, B. (1921) Geologische Studien am Westende der Hohen Tauern. Zweiter Bericht. Jahrb. Geol. St.-A., 70, 273–96.Google Scholar
Schon, C. and Lammerer, B. (1993) Strainanalyse an grobklastischen Metasedimenten des westlichen Tauernfensters. Abh. Geol. B.-A., 49, 97–106.Google Scholar
Schulz, B. (1990) Tectonic significance of an early-Alpine P—r-deformation path from Austroalpine micaschists to the south of the Tauern Window, Eastern Alps. Schweiz. Mineral. Petrogr. Mitt., 70, 403–17.Google Scholar
Schulz, B. (1994) Geologische Karte 1 : 50 000 des Altkristallins b'stlich des Tauferer Tals (Siidtirol). Erlanger geol. Abh., 124, 1–28.Google Scholar
Schulz, B., Nollau, G., Heinisch, H. and Godizart, G. (1993) Austro-Alpine basement complex to the south of the Tauern Window. In Pre-Mesozoic Geology in the Alps (von Raumer, J.F. and Neubauer, F., eds), 493–512, Heidelberg (Springer Verlag).Google Scholar
Schulz, B., Oehlke, M., Audren, C. and Triboulet, C. (1994) Evolution pression-temperature-temps-defor-mation d'age Alpin des amphibolites du SW de la fenStre des Tauern (Alpes orientales). C. R. Acad. Sci. Paris, 318/11, 1483-8.Google Scholar
Selverstone, J. (1988) Evidence for east-west crustal extension in the Eastern Alps: implications for the unroofing history of the Tauern Window. Tectonics, 7, 87–105.CrossRefGoogle Scholar
Selverstone, J. (1993) Micro-to macroscale interactions between deformational and metamorphic processes, Tauern Window, Eastern Alps. Schweiz. Mineral. Petrogr. Mitt., 73, 229–39.Google Scholar
Selverstone, J. and Spear, F.S. (1985) Metamorphic P—T paths from pelitic schists and greenstones from the south-west Tauern Window, Eastern Alps. J. Metamorphic Geol., 3, 439–65.CrossRefGoogle Scholar
Selverstone, J., Spear, F.S., Franz, G. and Morteani, G. (1984) High-pressure metamorphism in the SW Tauern Window, Austria: P—T paths from horn-blende-kyanite-staurolite schists. J. Petrol., 25, 501–31.CrossRefGoogle Scholar
Senarclens-Grancy, W. (1972) Geologische Karte der westlichen Deferegger Alpen 1 : 25000. Geol. Osterreich, B.-A. (ed.) , Wien.Google Scholar
Spear, F.S. (1980) NaSi-CaAl exchange equilibrium between plagioclase and amphibole: an empirical model. Contrib. Mineral. Petrol, 80, 140–6.Google Scholar
Spear, F.S. (1981) An experimental study of hornblende stability and compositional variability in amphibolite. Amer. J. Sci., 281, 697–734.CrossRefGoogle Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph Series, 1, 799 pp.Google Scholar
Spear, F.S. and Franz, G. (1986) P-T evolution of metasediments from the Eclogite Zone, south-central Tauern Window, Austria. Lithos, 19, 219–34.CrossRefGoogle Scholar
Spear, F.S. and Selverstone, J. (1983) Quantitative P-T paths from zoned minerals: theory and tectonic applications. Contrib. Mineral. Petrol, 83, 348–57.CrossRefGoogle Scholar
Stockhert, B. (1984) K-Ar determinations on muscovites and phengites and the minimum age of the Old Alpine deformation in the Austridic basement south of the Tauern Window (Ahrn valley, Southern Tyrol, Eastern Alps). Neues Jahrb. Mineral, Abh., ISO, 103-20.Google Scholar
Thieblemont, D., Triboulet, C. and Godard, G. (1988) Mineralogy, petrology and P-T-t path of Ca-Na amphibole assemblages, Saint-Martin-des-Noyers formation, Vendee, France. J. Metam. Geol., 6, 697–715.CrossRefGoogle Scholar
Thiele, O. (1970) Zur Stratigraphie und Tektonik der Schieferhiille der westlichen Hohen Tauern. Verh. Geol. B.-A., 230-44.Google Scholar
Tollmann, A. (1977) Geologie von Osterreich, Band 1. Die Zentralalpen. 766 pp., Wien (Deuticke Verlag).Google Scholar
Triboulet, C. (1992) The (Na-Ca)amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 1. An empirical calibration. J. Metam. Geol, 10, 545–56.CrossRefGoogle Scholar
Triboulet, C. and Audren, C. (1988) Controls on P-T-t deformation path from amphibole zonation during progressive metamorphism of basic rocks (estuary of the River Vilaine, South Brittany, France). J. Metam. Geol, 6, 117–33.CrossRefGoogle Scholar
Triboulet, C, Thieblemont, D. and Audren, C. (1992) The (Na-Ca)amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 2. Applications to metabasic rocks in different metamorphic settings. J. Metam. Geol, 10, 557–66.CrossRefGoogle Scholar
Vittel, G. and Fabries, J. (1982) Characterization de revolution polymetamorphique du Hoggar central (Sahara) basee sur l'analyse cristallochimique d'amphiboles calciques. Bull. Mineral, 105, 110–24.Google Scholar
Zimmermann, R., Hammerschmidt, K. and Franz, G. (1994) Eocene high pressure metamorphism in the Penninic units of the Tauern Window (Eastern Alps): evidence from 40Ar-39Ar dating and petrological investigations. Contrib. Mineral. Petrol., 117, 175–86.CrossRefGoogle Scholar