Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:50:59.080Z Has data issue: false hasContentIssue false

Microlite-group minerals: tracers of complex post-magmatic evolution in beryl–columbite granitic pegmatites, Maršíkov District, Bohemian Massif, Czech Republic

Published online by Cambridge University Press:  14 July 2021

Štěpán Chládek*
Affiliation:
Department of Geological Engineering, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Poruba-Ostrava, Czech Republic
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Milan Novák
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic
Peter Bačík
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Tomáš Opletal
Affiliation:
Department of Analytical Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
*
*Author for correspondence: Štěpán Chládek, Email: [email protected]

Abstract

Microlite-group minerals occur as common replacement products after primary and secondary columbite-group minerals (CGM) in albitised blocky K-feldspar and in coarse-grained, muscovite-rich units of the Schinderhübel I, Scheibengraben and Bienergraben beryl–columbite pegmatites in the Maršíkov District (Silesian Unit, Bohemian Massif, Czech Republic). Textural and compositional variations of microlite-group minerals were examined using electron probe micro-analyses and microRaman spectroscopy (μRS). A complex post-magmatic evolution of the pegmatites and the following microlite populations (Mic) and related processes were found: (1) precipitation of U, Na-rich and F-poor Mic I on cracks in CGM; (2) alteration of Mic I to U-rich together with Na- and F-poor Mic II; and (3) partial replacement of Mic I and II by Mic III with a distinct Na, U and Ti loss and Ca and F gain. Stage (2) includes an extensive leaching of Na, without U loss. The final stage (3) produced euhedral-to-subhedral oscillatory zoned Ca and F enriched Mic III with distinctly different composition to the previous F-poor and A-site vacant Mic II. Aggregates of fersmite are associated commonly with Mic III. Distal Mic IIId occurs locally on cracks in K-feldspar or quartz, with compositions analogous to Mic III. Compositional variations and textural features of microlite-group minerals during dissolution–reprecipitation processes serve as sensitive tracers of post-magmatic evolution in granitic pegmatites recording complex interactions between magmatic pegmatite units and externally derived, hydrothermal metamorphic fluids.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Aniket Chakrabarty

References

Amores-Casals, S., Gonçalves, A.O., Melgarejo, J.C. and Martí, J. (2020) Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola). Minerals, 10, 5.CrossRefGoogle Scholar
Andrade, M.B., Atencio, D., Chukanov, N.V. and Ellena, J. (2013) Hydrokenomicrolite, (□,H2O)2Ta2(O,OH)6(H2O), a new microlite group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. American Mineralogist, 98, 292296.CrossRefGoogle Scholar
Andrade, M.B., Yang, H., Atencio, D., Downs, R.T., Chukanov, N.V., Lemée-Cailleau, M.H., Persiano, A.I.C., Goeta, A.E. and Ellena, J. (2017) Hydroxylcalciomicrolite, Ca1.5Ta2O6(OH), a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineralogical Magazine, 81, 555564.CrossRefGoogle Scholar
Arenas, D.J., Gasparov, L.V., Qiu, W., Nino, J.C., Patterson, C.H. and Tanner, D.B. (2010) Raman study of phonon modes in bismuth pyrochlores. Physical Review, 82, 214302.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: Nomenclature. The Canadian Mineralogist, 48, 673698.10.3749/canmin.48.3.673CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Neto, A.C.B. and Pereira, V.P. (2017) Ralstonite renamed hydrokenoralstonite, coulsellite renamed fluornatrocoulsellite, and their incorporation into the pyrochlore supergroup. The Canadian Mineralogist, 55, 115120.10.3749/canmin.1600056CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Bindi, L., Bonazzi, P., Zoppi, M., Stanley, C.J. and Kristiansen, R. (2018) Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a new mineral from Ploskaya, Kola Peninsula, Russia. Mineralogical Magazine, 82, 10491055.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Zoppi, M., Capitani, G.C. and Olmi, F. (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssârssuk, Julianehaab district, Greenland. American Mineralogist, 91, 794801.CrossRefGoogle Scholar
Čech, F. (1973) Manganoan tapiolite from Northern Moravia, Czechoslovakia. Acta Universitatis Carolinae, Geologica, 1–2, 3745.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Černý, P., Novák, M. and Chapman, R. (1992) Effects of sillimanite-grade metamorphism and shearing on Nb,Ta-oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia. The Canadian Mineralogist, 30, 699718.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1995) The Al (Nb,Ta) Ti-2 substitution in titanite: the emergence of a new species? Mineralogy and Petrology, 52, 6173.CrossRefGoogle Scholar
Cháb, J., Fediuková, E., Fišera, M., Novotný, P. and Opletal, M. (1990) Variscan orogeny in the Silesicum (ČSFR). Sborník geologických věd, Ložisková geologie a mineralogie, 29, 939 [in Czech, English summary].Google Scholar
Cháb, J., Stráník, Z. and Eliáš, M. (2007) Geological map of the Czech Republic 1 : 500000. Czech Geological Survey, Prague, Czech Republic [in Czech, English summary].Google Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chládek, Š., Uher, P. and Novák, M. (2020) Compositional and textural variations of columbite-group minerals from beryl-columbite pegmatites, the Maršíkov District, Bohemian Massif, Czech Republic: magmatic versus hydrothermal evolution. The Canadian Mineralogist, 58, 767783.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Chudík, P. and Uher, P. (2009) Pyrochlore group minerals from the granitic pegmatites of the Western Carpathians: Compositional variations and substitution mechanisms. Mineralia Slovaca, 41, 159168 [in Slovak with English summary].Google Scholar
Chudík, P., Uher, P., Gadas, P., Škoda, R. and Pršek, J. (2011) Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be,Cs-rich and Li,B-poor dike. Mineralogy and Petrology, 102, 1527.10.1007/s00710-011-0163-9CrossRefGoogle Scholar
Demartis, M., Melgarejo, J.C., Colombo, F., Alfonso, P., Coniglio, J.E., Pinotti, L.P. and D'Eramo, F.J. (2014) Extreme F activities in late pegmatitic events as a key factor for LILE and HFSE enrichment: the Ángel pegmatite, Central Argentina. The Canadian Mineralogist, 52, 247269.CrossRefGoogle Scholar
De Vito, C.D., Pezzotta, F., Ferrini, V. and Aurisicchio, C. (2006) Nb–Ta–Ti oxides in the gem-mineralized and “hybrid” Anjanabonoina granitic pegmatite, Central Madagascar: a record of magmatic and postmagmatic events. The Canadian Mineralogist, 44, 87103.CrossRefGoogle Scholar
Dey, M., Mitchell, R.H., Bhattacharjee, S., Chakrabarty, A., Pal, S., Pal, S. and Sen, A.K. (2021) Composition and genesis of albitite-hosted antecrystic pyrochlore from the Sevattur carbonatite complex, India. Mineralogical Magazine, 85, 568587.CrossRefGoogle Scholar
Dolníček, Z., Nepejchal, M., Sejkora, J., Ulmanová, J. and Chládek, Š. (2020a) Bohseite from beryl-columbite pegmatite D6e in Maršíkov (Silesicum, Czech Republic). Bulletin Mineralogie Petrologie, 28, 219223 [in Czech with English summary].CrossRefGoogle Scholar
Dolníček, Z., Nepejchal, M. and Novák, M. (2020b) Minerals of the bavenite-bohseite series from the Schinderhübel I pegmatite in Maršíkov (Silesicum, Czech Republic). Bulletin Mineralogie Petrologie, 28, 353358 [in Czech with English summary].CrossRefGoogle Scholar
Dostál, J. (1966) Mineralogische und Petrographische Verhältnisse von Chrysoberyll-Sillimanit Pegmatit von Maršíkov. Acta Universitatis Carolinae, Geologica, 4, 271287.Google Scholar
Dumańska-Slowik, M., Pieczka, A., Tempesta, G., Olejniczak, Z. and Heflik, W. (2014) “Silicified” pyrochlore from nepheline syenite (mariupolite) of the Mariupol Massif, SE Ukraine: A new insight into the role of silicon in the pyrochlore structure. American Mineralogist, 99, 20082017.CrossRefGoogle Scholar
Duran, Ch.J., Seydoux-Guillaume, A.M., Bingen, B., Gouy, S., De Parseval, P., Ingrin, J. and Guillaume, D. (2016) Fluid-mediated alteration of (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway. Mineralogy and Petrology, 110, 581599.CrossRefGoogle Scholar
Ercit, T.S. (1994) The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. The Canadian Mineralogist, 32, 421438.Google Scholar
Ewing, R.C. (1975) The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: Discussion. American Mineralogist, 60, 728733.Google Scholar
Ewing, R.C. (1994) The metamict state: 1993 the centennial. Nuclear Instruments and Methods in Physics Research, B91, 2229.CrossRefGoogle Scholar
Ewing, R.C., Meldrum, A., Wang, L.M. and Wang, S.X. (2000) Radiation-induced amorphisation. Pp. 319362 in: Transformation Processes in Minerals (Ewing, R.C., Meldrum, A., Wang, L.M. and Wang, S.X., editors). Reviews in Mineralogy and Geochemistry, 39. Mineralogical Society of America, Washington DC.Google Scholar
Franz, G. and Morteani, G. (1984) The formation of chrysoberyl in metamorphosed pegmatites. Journal of Petrology, 25, 2752.CrossRefGoogle Scholar
Galliski, M.Á., Márquez-Zavalía, M.F., Černý, P. and Lira, R. (2016) Complex Nb-Ta-Ti-Sn oxide mineral intergrowths in the La Calandria pegmatite, Cañada del Puerto, Córdoba, Argentina. The Canadian Mineralogist, 54, 899916.CrossRefGoogle Scholar
Geisler, T., Berndt, J., Meyer, H.W., Pollok, K. and Putnis, A. (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between Nature and experiment. Mineralogical Magazine, 68, 905922.CrossRefGoogle Scholar
Glerup, M., Nielsen, O.F. and Poulsen, F.W. (2001) The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 160, 2532.CrossRefGoogle Scholar
Gonçalves, A.O., Melgarejo, J.C., Alfonso, P., Amores, S., Paniagua, A., Neto, A.B., Morais, E.A. and Camprubí, A. (2019) The distribution of rare metals in the LCT pegmatites from the Giraúl Field, Angola. Minerals, 9, 138.CrossRefGoogle Scholar
Guastoni, A., Diella, V. and Pezzotta, F. (2008) Vigezzite and associated oxides of Nb-Ta from emerald bearing pegmatites of the Vigezzo valley (Western Alps, Italy). The Canadian Mineralogist, 46, 783797.CrossRefGoogle Scholar
Hegner, E. and Kröner, A. (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspatic reconstruction. Pp. 113129 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (Franke, W., Haak, V., Oncken, O. and Tanner, D., editors). Geological Society, Special Publications, Vol. 179. London, UK.Google Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Janoušek, V., Aichler, J., Hanžl, P., Gerdes, A., Erban, V., Žáček, V., Pecina, V., Pudilová, M., Hrdličková, K., Mixa, P. and Žáčková, E. (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplionary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic). International Journal of Earth Sciences, 103, 455483.CrossRefGoogle Scholar
Johan, V. and Johan, Z. (1994) Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic Part 1: Nb-, Ta-, and Ti-bearing oxides. Mineralogy and Petrology, 51, 323343.10.1007/BF01159735CrossRefGoogle Scholar
Kasatkin, A.V., Britvin, S.N., Peretyazhko, I.S., Chukanov, N.V., Škoda, R. and Agakhanov, A.A. (2020) Oxybismutomicrolite, a new pyrochlore-supergroup mineral from the Malkhan pegmatite field, Central Transbaikalia, Russia. Mineralogical Magazine, 84, 444454.CrossRefGoogle Scholar
Košuličová, M. and Štípská, P. (2007) Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: a case study from the Barrovian and Buchan-type domains in the Bohemian Massif. Journal of Metamorphic Geology, 25, 1936.CrossRefGoogle Scholar
Krönner, A., O´Brien, P.J., Nemchin, A.A. and Pidgeon, R.T. (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contributions to Mineralogy and Petrology, 138, 127142.Google Scholar
Kruťa, T. (1966) Moravian Minerals and their Literature 1940–1965. Moravské museum, Brno, 379 pp [in Czech, English summary].Google Scholar
Laurent, A., Janoušek, V., Magna, T., Schulmann, K. and Míková, J. (2014) Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. Journal of Geosciences, 59, 415440.CrossRefGoogle Scholar
Lee, J.K.W. and Tromp, J. (1995) Self-induced fracture generation in zircon. Journal of Geophysical Research, B9, 1775317770.CrossRefGoogle Scholar
Llorens, T. and Moro, M.C. (2010) Microlite and tantalite in the LCT granitic pegmatites of La Canalita, Navasfrías Sn–W District, Salamanca, Spain. The Canadian Mineralogist, 57, 155171.Google Scholar
Loun, J., Novák, M., Cempírek, J., Škoda, R., Vašinová–Galiová, M., Prokeš, L., Dosbaba, M. and Čopjaková, R. (2018) Geochemistry and secondary alterations of microlite from eluvial deposits in the Numbi mining area, S. Kivu, Democratic Republic of the Congo. The Canadian Mineralogist, 56, 118.CrossRefGoogle Scholar
Lumpkin, G.R. (1998) Rare-element mineralogy and internal evolution of the Rutherford #2 pegmatite, Amelia County, Virginia: a classic locality revisited. The Canadian Mineralogist, 36, 339353.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. American Mineralogist, 77, 179188.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. American Mineralogist, 81, 12371248.CrossRefGoogle Scholar
Lumpkin, G.R., Chakoumakos, B.C. and Ewing, R.C. (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 71, 569588.Google Scholar
Lumpkin, G.R., Gieré, R., Williams, C.T., McGlinn, P.J. and Payne, T.E. (2017) Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy. Mineralogy and Petrology, 111, 499509.CrossRefGoogle Scholar
Martin, R.F. and De Vito, C.D. (2014) The late-stage miniflood of Ca in granitic pegmatites: an open-system acid-reflux model involving plagioclase in the exocontact. The Canadian Mineralogist, 52, 165181.CrossRefGoogle Scholar
Melcher, F., Graupner, T., Gäbler, H.E., Sitnikova, M., Henjes-Kunst, F., Oberthür, T., Gerdes, A. and Dewaele, S. (2015) Tantalum – (niobium – tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta – Nb oxide mineralogy, geochemistry and U – Pb geochronology. Ore Geological Reviews, 64, 667719.CrossRefGoogle Scholar
Melgarejo, J.C., Costanzo, A., Bambi, A.C.J.M., Gonçalves, A.O. and Neto, A.B. (2012) Subsolidus processes as a key factor on the distribution of Nb species in plutonic carbonatites: The Tchivira case, Angola. Lithos, 152, 187201.CrossRefGoogle Scholar
Meyer, C. and Young, S.V. (1988) Tungsten-bearing yttrobetafite in lunar granophyre. American Mineralogist, 73, 14201425.Google Scholar
Mikulski, S.Z., Williams, I.S. and Bagiński, B. (2013) Early Carboniferous (Viséan) emplacement of the collisional Klodsko-Zloty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U–Pb ages. International Journal of Earth Sciences, 102, 10071027.CrossRefGoogle Scholar
Mokhov, A.V., Kartashov, P.M., Bogatikov, O.A., Ashikhmina, N.A., Magazina, L.O. and Koporulina, E.V. (2008) Fluorite, hatchettolite, calcium sulfate, and bastnasite-(Ce) in the lunar regolith from Mare Crisium. Doklady Earth Sciences, 422, 11781180.CrossRefGoogle Scholar
Nasdala, L., Kronz, A., Wirth, R., Váczi, T., Pérez-Soba, C., Willner, A. and Kennedy, A.K. (2009) The phenomenon of deficient electron micro-probe totals in radiation-damaged and altered zircon. Geochimica et Cosmochimica Acta, 73, 16371650.CrossRefGoogle Scholar
Novák, M. (1988) Garnets from pegmatites of the Hrubý Jeseník (northern Moravia). Acta Musei Moraviae, Scientiae Naturales, 73, 328 [in Czech, English summary].Google Scholar
Novák, M. (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); Mineralogical, geochemical and regional classification and geological significance. Acta Musei Moraviae, Scientiae Geologicae, 90, 374 [in Czech, English summary].Google Scholar
Novák, M. and Černý, P. (1998) Niobium – tantalum oxide minerals from complex granitic pegmatites in the Moldanubicum, Czech Republic: primary versus secondary compositional trends. The Canadian Mineralogist, 36, 659672.Google Scholar
Novák, M. and Dosbaba, M. (2006) Breakdown of primary columbite–tantalite related to Alpine-type hydrothermal alteration, and redistribution of its components. Acta Mineralogica-Petrographica, Abstract Series, 5, 85.Google Scholar
Novák, M. and Rejl, L. (1993) Relations of the muscovite pegmatites to the geophysical fields in the area of the HrubýJeseník Mts., Czechoslovakia. Acta Musei Moraviae, Scientiae Naturales, 77, 4961 [in Czech, English summary].Google Scholar
Novák, M., Uher, P., Černý, P. and Siman, P. (2000) Compositional variations in ferrotapiolite+tantalite pairs from the beryl-columbite pegmatite at Moravany nad Váhom, Slovakia. Mineralogy and Petrology, 69, 295306.Google Scholar
Novák, M., Černý, P. and Uher, P. (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite pegmatite, Maršíkov, Czech Republic. European Journal of Mineralogy, 15, 565574.CrossRefGoogle Scholar
Novák, M., Čopjaková, R., Dosbaba, M., Galiová, M.V., Všianský, D. and Staněk, J. (2015) Two paragenetic types of cookeite from the Dolní Bory-Hatě pegmatites, Moldanubian Zone, Czech Republic: Proximal and distal alteration products of Li-bearing sekaninaite. The Canadian Mineralogist, 53, 10351048.CrossRefGoogle Scholar
Novák, M., Prokop, J., Losos, Z. and Macek, I. (2017) Tourmaline, an indicator of external Mg-contamination of granitic pegmatites from host serpentinite; examples from the Moldanubian Zone, Czech Republic. Mineralogy and Petrology, 111, 625641.10.1007/s00710-017-0512-4CrossRefGoogle Scholar
Oliveira, E.A., Guedes, I., Ayala, A.P., Gesland, J.Y., Ellena, J., Moreira, R.L. and Grimsditch, M. (2004) Crystal structure and vibrational spectrum of the NaCaMg2F7 pyrochlore. Journal of Solid State Chemistry, 177, 29432950.CrossRefGoogle Scholar
Pokorný, J. and Staněk, J. (1951) Beryl pegmatite from Scheibengraben near Maršíkov. Práce Moravskoslezské Akademie Věd Přírodních, 7, 247258 [in Czech].Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editors). San Francisco Press, San Francisco, USA.Google Scholar
Prol-Ledesma, R.M., Melgarejo, J.C. and Martin, R.F. (2012) The El Muerto “NYF” granitic pegmatite, Oaxaca, Mexico, and its striking enrichment in allanite-(Ce) and monazite-(Ce). The Canadian Mineralogist, 50, 10551076.CrossRefGoogle Scholar
René, M. (1983) Geochemistry and petrology of metapelites in the envelope of the core of the Desná Dome in northern Moravia. Časopis pro Mineralogii a Geologii, 28, 277286 [in Czech].Google Scholar
Schulmann, K., Oliot, E., Košuličová, M., Montigny, R. and Štípská, P. (2014) Variscan thermal overprints exemplified by U–Th–Pb monazite and K–Ar muscovite and biotite dating at the eastern margin of the Bohemian Massif (East Sudetes, Czech Repubic). Journal of Geosciences, 59, 389413.CrossRefGoogle Scholar
Sharygin, V.V., Sobolev, N.V. and Channer, D.M.DeR. (2009) Oscillatory-zoned pyrochlore-group minerals from the Guaniamo kimberlites, Venezuela. Lithos, 112, 976985.CrossRefGoogle Scholar
Siegel, K., Vasyukova, O.V. and Williams-Jones, A.E. (2018) Magmatic evolution and controls on rare metal-enrichment of the Strange Lake peralkaline A-type granitic pluton, Québec-Labrador. Lithos, 308–309, 3452.CrossRefGoogle Scholar
Spilde, M.N. and Shearer, C.K. (1992) A comparison of tantalum-niobium oxide assemblages in two mineralogically distinct rare-element granitic pegmatites, Black Hills, South Dakota. The Canadian Mineralogist, 30, 719737.Google Scholar
Szuszkiewicz, A., Pieczka, A., Szełęg, E., Turniak, K., Ilnicki, S. and Nejbert, K. (2016) The euxenite-group minerals and products of their alteration in the hybrid Julianna granitic pegmatite, Piława Górna, Sudetes, southwestern Poland. The Canadian Mineralogist, 54, 879898.CrossRefGoogle Scholar
Tindle, A.G. and Breaks, F.W. (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36, 609635.Google Scholar
Uher, P., Černý, P., Chapman, R., Határ, J. and Miko, O. (1998) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal overprint. The Canadian Mineralogist, 36, 535545.Google Scholar
Walter, B.F., Parsapoor, A., Braunger, S., Marks, M.A.W., Wenzel, T., Martin, M. and Markl, G. (2018) Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany). Chemical Geology, 498, 116.CrossRefGoogle Scholar
Weisenberger, T. and Bucher, K. (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the Simano nappe: Arvigo, Val Calanca, Swiss Alps. Contributions to Mineralogy and Petrology, 162, 6181.CrossRefGoogle Scholar
Zaitsev, A.N., Spratt, J., Shtukenberg, A.G., Zolotarev, A.A., Britvin, S.N., Petrov, S.V., Kuptsova, A.V. and Antonov, A.V. (2021) Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania. Mineralogical Magazine, 85, 532553.CrossRefGoogle Scholar
Zietlow, P. (2016) Properties and Recrystallization of Radiation Damaged Pyrochlore and Titanite. PhD dissertation, University of Hamburg, Germany.Google Scholar
Zietlow, P., Beirau, T., Mihailova, B., Groat, L.A., Chudy, T., Shelyug, A., Navrotsky, A., Ewing, R.C., Schlütter, J., Škoda, R. and Bismayer, U. (2017) Thermal annealing of natural, radiation-damaged pyrochlore. Zeitschrift fur Kristallographie, 232, 2538.Google Scholar