Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T06:16:11.171Z Has data issue: false hasContentIssue false

A metacolloidal dendrite-rich Bi-Ni-Co quartz vein, Pozoblanco, Spain

Published online by Cambridge University Press:  05 July 2018

I. S. Oen
Affiliation:
Instituut voor Aardwetenschappen De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
C. Kieft
Affiliation:
Instituut voor Aardwetenschappen De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Abstract

A Bi-Ni-Co vein in the contact zone of a granite near Pozoblanco, Córdoba, Spain, shows a zoned structure with mm-thin quartz wall zones, up to 20 cm thick Bi-rich quartz zones, and a few cm thick quartz-bismuth transition zones grading into a central quartz vug zone. The Bi-rich zones show textures indicating a metacolloidal origin from a silica gel enriched in adsorbed Bi: (1) globular and chain aggregates of fine-granular allotriomorphic quartz represent morphological relics of a globulated silica gel; (2) quartz rosettes, chain rosettes and stringer-combs radiating from the quartz globules and chains represent crystallised silica gel matrix; (3) crack fillings of quartz, gersdorffite and platy bismuth dendrites represent precipitates of metal-saturated dilute hydrosols filling shrinkage cracks in the desiccating and crystallising gel; (4) quartz spherocrystals in rosettes and combs are clouded with colloidal particles inherited from the silica gel; (5) unsupported wall rock inclusions represent inclusions in a viscous silica gel precursor covering fissure walls. The thin wall zones are quartz fillings of cracks between shrinking gel and walls. The transition and vug zones are recrystallised colloidal silica crusts precipitated by fissure-filling rest-solutions. Tree-like bismuth-gersdorffite dendrites in the transition zones are precipitates of metal-rich solutions infiltrating from the Bi-rich zones into the recrystallising silica crusts. The pre-concentration of metals in silica gels explains the dendrite formation without assuming abnormally high metal concentrations in transporting solutions or long range diffusion processes.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Defalque, G., Dumont, P., and Panou, G. (1971) Bull. Soc. Beige Gdol., Paldont., Hydrogdol., 80, 5160.Google Scholar
Edwards, A. B. (1947) Textures of the ore minerals and their significance. Austral. Inst. Mining Metall., Melbourne, 185 pp.Google Scholar
Garrels, R. M., Dreyer, R. M., and Howland, A. L. (1949) Bull. Geol. Soc. Amer., 60, 1809–28.Google Scholar
Godonikov, A. A. and Kolonin, G. R. (1966) Zeits. Angew. Geol., 12, 128–30.Google Scholar
Grigor'ev, D. P. (1965) Ontogeny of minerals. Israel Program Scientific Translations, Jerusalem, 250 pp.Google Scholar
Guilbert, J. M. and Park, C. F., Jr. (1986) The geology of ore deposits. W. H. Freeman & Co., New York, 985 pp.Google Scholar
Lebedev, L. M. (1967) Metacolloids in endogenic deposits. Plenum Press, New York, 298 pp.Google Scholar
Oen, I. S., Dunn, P. J., and Kieft, C. (1984) Neues Jahrb. Mineral. Abh., 150, 259–72.Google Scholar
Ramdohr, P. (1980) The ore minerals and their intergrowths. 2nd Ed. Pergamon Press, Oxford, 1205 pp.Google Scholar
Rosner, B. (1970) Neues Jahrb. Mineral., Mh., 483-98.Google Scholar
Triguero, E. M. (1966) Notas Comun. Inst. Geol. Minero Espana, 82, 926.Google Scholar
Yund, R. A. (1962) Amer. J. Sci., 260, 761–82.Google Scholar