Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T18:37:49.286Z Has data issue: false hasContentIssue false

Mercury in rocks and minerals of the Skaergaard intrusion, East Greenland

Published online by Cambridge University Press:  05 July 2018

C. B. Dissanayake
Affiliation:
Department of Geology and Mineralogy, University of Oxford
E. A. Vincent
Affiliation:
Department of Geology and Mineralogy, University of Oxford

Summary

Mercury has been determined by radiochemical neutron-activation analysis in nineteen representative rocks from the Skaergaard intrusion and in the separated cumulus minerals of five. The chilled marginal gabbro contains 0.23 ppm Hg, values in the Layered Series rocks ranging from 0.07 to 0.34 ppm, in one exceptional case reaching 1.23 ppm Hg. There is a tendency for mercury to be more abundant in leucocratic than in average or melanocratic rocks at a similar horizon. Somewhat higher levels of mercury are found in the granophyric rocks at the top of the intrusion.

Apart from a weak and sporadic tendency to be preferentially enriched in plagioclase, the distribution of mercury between the various cumulus phases is fairly uniform and it is thought to occur as uncharged atoms mainly occupying spaces resulting from lattice defects and imperfections rather than in specific structural sites.

The distribution pattern of mercury in the intrusion appears to be determined by its high volatility and chemical inertness; no real evidence of any chalcophile character is observed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, (C. G.), 1965. Unpublished D.Phil. thesis, University of Oxford.Google Scholar
Chayes, (F.), 1970. Journ. Petrology, 11, 114 [M.A. 21-2616].CrossRefGoogle Scholar
Cotron, (F. A.) and Wilkinson, (G.), 1967. Advanced Inorganic Chemistry (New York, London, Sydney: Interscience Publishers).Google Scholar
Du Fresne, (E. R.) and Anders, (E.), 1962. Geochimica Acta, 26, 251-62 [M.A. 16-449].CrossRefGoogle Scholar
Ehmann, (W. D.) and Lovering, (J. F.), 1967. Geochimica Acta, 31, 357-76 [M.A. 19-123].CrossRefGoogle Scholar
Eshelman, (A.), Siegel, (S. M.), and Siegel, (B. A.), 1971. Nature, 233, 471-2.CrossRefGoogle Scholar
gay, (P.) and Muir, (I. D.), 1962. Journ. Geol. 70, 565-81 [M.A. 16-381].CrossRefGoogle Scholar
Goldschmidt, (V. M.) (Ed. A. Muir), 1954. Geochemistry (Oxford, Clarendon Press).Google Scholar
Henderson, (P.), 1970. Journ. Petrology, 11, 463-73 [M.A. 22-1066].CrossRefGoogle Scholar
Lancet, (M. S.) and Anders, (E.), 1973. Geochimica Acta, 37, 1371-88.CrossRefGoogle Scholar
Marowski, (G.), 1971. Zeits. anal. Chem. 253, 267-71.CrossRefGoogle Scholar
Mcneal, (J. M.), Suhr, (N. H.), and Rose, (A. W.), 1972. Chem. Geol. 10, 307-11.CrossRefGoogle Scholar
Reed, (G. W.) and Jovanovlc, (S.), 1967. Journ. Geophys. Res. 72, 2219-28 [M.A. 19-209].CrossRefGoogle Scholar
[Saukov, (A. A.)] Caykob, (A. A.), 1946. Akad. Nauk SSSR; Inst. Geol. Nauk No. 78(Mineralogo-Geokhim. Set. No. 17). Google Scholar
Taylor, (S. R.), 1964. Geochimica Acta, 28, 1273-85 [M.A. 17-165].CrossRefGoogle Scholar
Vincent, (E. A.) and Crocket, (J. H.), 1960. Geochimica Acta, 18, 130-42 [M.A. 15-444].CrossRefGoogle Scholar
Wager, (L. R.), 1960. Journ. Petrology, 1, 384-98 [M.A. 15-316].CrossRefGoogle Scholar
Wager, (L. R.), and Brown, (G. M.), 1968. Layered Igneous Rocks (Edinburgh and London, Oliver and Boyd).Google Scholar
Wager, (L. R.), Vincent, (E. A.), and Smales, (A. A.), 1957. Econ. Geol. 52, 855-903.CrossRefGoogle Scholar
Yule, (H. P.), 1968. Anal. Chem. 40, 1480-6.CrossRefGoogle Scholar