Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:36:38.389Z Has data issue: false hasContentIssue false

Medvedevite, KMn2+V5+2O6Cl⋅2H2O, a new fumarolic mineral from the Tolbachik fissure eruption 2012–2013, Kamchatka Peninsula, Russia

Published online by Cambridge University Press:  13 May 2022

Andrey P. Shablinskii
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, Makarova Emb. 2., 199034, Saint Petersburg, Russia
Margarita S. Avdontceva
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Emb. 7/9., 199034, Saint Petersburg, Russia
Lidiya P. Vergasova
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006, Petropavlovsk-Kamchatsky, Russia
Stanislav K. Filatov*
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Emb. 7/9., 199034, Saint Petersburg, Russia
Evgenia Yu. Avdontseva
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Emb. 7/9., 199034, Saint Petersburg, Russia
Alexey V. Povolotskiy
Affiliation:
Institute of Chemistry, Saint Petersburg State University, University Emb. 7/9., 199034, Saint Petersburg, Russia
Svetlana V. Moskaleva
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006, Petropavlovsk-Kamchatsky, Russia
Anatoly A. Kargopoltsev
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006, Petropavlovsk-Kamchatsky, Russia
Sergey N. Britvin
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Emb. 7/9., 199034, Saint Petersburg, Russia
Olga U. Shorets
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, Makarova Emb. 2., 199034, Saint Petersburg, Russia
*
*Author for correspondence: Stanislav K. Filatov, Email: [email protected]

Abstract

Medvedevite, KMn2+V5+2O6Cl⋅2H2O, is a new mineral discovered in the Toludskoe lava field, formed during the 2012–2013 Tolbachik fissure eruption. The mineral occurs as thin acicular transparent bright red crystals up to 0.15 mm. Medvedevite is associated with thénardite, halite, aphthitalite, leonite, kieserite, eugsterite and syngenite. The empirical formula calculated on the basis of 13+ positive charge units for the anhydrous part and 2H2O is (K1.02Na0.03)Σ1.05Mn2+0.95(V5+1.92S6+0.05Si0.04)Σ2.01O6.02Cl0.96⋅2H2O. The crystal structure of medvedevite was determined using single-crystal X-ray diffraction data: monoclinic crystal system, the space group is P21/c, a = 7.1863(2), b = 10.1147(3), c = 12.7252(4) Å, β = 106.243(3)°, V = 888.04(5) Å3, Z = 4 and R1 = 0.029. The concept of ‘structural unit’ and ‘interstitial complex’ could be applied to the crystal structure of medvedevite. The structural units in medvedevite are based on the high bond-valence V5+O5 polyhedra which share edges and link into [V2O6] chains elongated along the a axis. The interstitial complexes consist of Mn2+, K+ cations and H2O groups and occupy the interstices between structural units. The mineral is optically biaxial (+), with α =1.782(2), β = 1.786(2), γ = 1.792(2), 2V(calc) = 41° (λ = 589 nm). The seven strongest lines of the powder XRD pattern are [d, Å (I, %) (hkl)]: 7.79(100)(011); 5.70(11)(110); 4.75(14)(11$\bar{2}$); 3.89(29)(022); 3.25(53)(031); 2.958(79)(21$\bar{3}$); and 2.850(33)(220). The mineral has been named in honour of the Russian geologist and chemist Robert Alexandrovich Medvedev (1939–2005).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Ahmed, F.R. and Barnes, W.H. (1963) The crystal structure of rossite. The Canadian Mineralogist, 7, 713726.Google Scholar
Baran, E.J., Cabello, C.I. and Nord, A.G. (1987) Raman spectra of some M IIV2O6 brannerite-type metavanadates. Journal of Raman Spectroscopy, 18, 405407.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proceedings of the Russian Mineralogical Society, 146, 104107 [in Russian].Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals 2 (O'Keeffe, M., Navrotsky, A., editors). Academic Press, New York, USA.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Brugger, J., Berlepsch, P., Meisser, N. and Armbruster, T. (2003) Ansermetite, MnV2O6⋅4H2O, a new mineral species with V5+ in five-fold coordination from Val Ferrera, Eastern Swiss Alps. The Canadian Mineralogist, 41, 14231431.CrossRefGoogle Scholar
Butt, K.A. and Mahmood, K. (1983) Munirite, naturally occuring sodium vanadium oxide hydrate, a new mineral. Mineralogical Magazine, 47, 391392.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Frost, R., Erickson, K.L. and Weier, M.L. (2004) Hydrogen bonding in selected vanadates: a Raman and infrared spectroscopy study. Spectrochimica Acta, A60, 24192423.CrossRefGoogle Scholar
Hawthorne, F.C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica, A39, 724736.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: the viM ivT 2φ minerals. American Mineralogist, 70, 455473.Google Scholar
Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American Mineralogist, 100, 696713.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.CrossRefGoogle Scholar
Hughes, J.M., Cureton, F.E., Marty, J., Gault, R.A., Gunter, M.E., Campana, C.F., Rakovan, J., Sommer, A. and Brueseke, M.E. (2001) Dickthomssenite, Mg(V2O6)⋅7H2O, a new mineral species from the Firefly-Pigmay Mine, Utah: descriptive mineralogy and arrangement of atoms. The Canadian Mineralogist, 39, 16911700.CrossRefGoogle Scholar
Kampf, A.R., Marty, J., Nash, B.P., Plasil, J., Kasatkin, A.V. and Skoda, R. (2012) Calciodelrioite, Ca(VO3)2(H2O)4, the Ca analogue of delrioite, Sr(VO3)2(H2O)4. Mineralogical Magazine, 76, 28032817.CrossRefGoogle Scholar
Kato, K. and Takayama, E. (1984) Das entwaesserungsverhalten des natriummetavanadatdihydrats und die kristallstruktur des beta-natriummetavanadats. Acta Crystallographica, B40, 102105.CrossRefGoogle Scholar
Kelsey, C.H. and Barnes, W.H. (1960) The crystal structure of metarossite. Canadian Mineralogist, 6, 448466.Google Scholar
Levi, E. and Aurbach, D. (2014) Crystal chemistry and valence determinations. Solid State Ionics, 257, 18.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone–Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Pekov, I.V., Zubkova, N.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S., Fadeeva, O.A. and Pushcharovsky, D.Y. (2013) Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 77, 107116.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Agakhanov, A.A., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2018b) Udinaite, IMA 2018-066. CNMNC Newsletter 45. Mineralogical Magazine, 82, 10371043.Google Scholar
Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.N., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G. and Sidorov, E.G. (2020a): Oxidizing-type fumarolic systems of the Tolbachik volcano – a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675688.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Y.S., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2020b) Kainotropite, Cu4Fe3+O2(V2O7)(VO4), a new mineral with a complex vanadate anion from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 58, 155165.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000a) A crystal-chemical approach to the composition and occurrence of vanadium minerals. The Canadian Mineralogist, 38, 14431456.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000b) Crystal-chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 12481259.CrossRefGoogle Scholar
Shablinskii, A.P., Avdontseva, M.S., Vergasova, L.P., Filatov, S.K., Avdontseva, E.Y., Povolotskiy, A.V., Moskaleva, S.V., Kargopoltsev, A.A. and Britvin, S.N. (2022) Medvedevite, IMA 2021-082. CNMNC Newsletter 65; European Journal of Mineralogy, 34, 142148.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Siidra, O.I., Krivovichev, S.V., Armbruster, T., Filatov, S.K., Pekov, I.V. (2007) The crystal structure of leningradite, PbCu3(VO4)2Cl2. The Canadian Mineralogist, 45, 445449.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A. and Polekhovsky, Y.S. (2019a) Aleutite [Cu5O2](AsO4)(VO4)⋅(Cu0.50.5)Cl, a new complex salt-inclusion mineral with Cu2+ substructure derived from Kagome-net. Mineralogical Magazine, 83, 847853.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Polekhovsky, Y.S., Wenzel, T. and Spratt, J. (2019b) Dokuchaevite, Cu8O2(VO4)3Cl3, a new mineral with remarkably diverse Cu2+ mixed-ligand coordination environments. Mineralogical Magazine, 83, 749755.CrossRefGoogle Scholar
Smith, M.L. (1970) Delrioite and metadelrioite from Montrose County, Colorado. American Mineralogist, 55, 185200.Google Scholar
Starova, G.L., Krivovichev, S.V., Fundamensky, V.S. and Filatov, S.K. (1997) The crystal structure of averievite, Cu5O2(VO4)2*nMX: comparison with related compounds. Mineralogical Magazine, 61, 441446.CrossRefGoogle Scholar
Thompson, M.E. and Sherwood, A.M. (1959) Delrioite, a new calcium strontium vanadate from Colorado. American Mineralogist, 44, 261264.Google Scholar
Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of Great Tolbachik fissure eruption. Journal of Volcanology and Seismology, 6, 281289.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.CrossRefGoogle Scholar
Vergasova, L.P., Filatov, S.K., Semenova, T.F. and Anan´ev, V.V. (1990) Leningradite PbCu3(VO4)2Cl2, a new mineral from volcanic exhalations. Doklady Akademii Nauk, 310, 157160 [in Russian].Google Scholar
Vergasova, L.P., Starova, G.L., Filatov, S.K. and Anan´ev, V.V. (1998) Averievite Cu5(VO4)2O2nMX – a new mineral of volcanic exhalations. Doklady Akademii Nauk, 359, 804807 [in Russian].Google Scholar
Vergasova, L.P., Filatov, S.K., Moskaleva, S.V., Nazarova, M.A., and Shablinskii, A.P. (2022) Post-eruptive Activity of the Third Scoria Cone of the Northern Breakthrough of the Great Fissure Tolbachik Eruption (Kamchatka, 1975–1976). Journal of Volcanology and Seismology, 3, 115.Google Scholar
Yao, G., Ren, Z. and Liu, P. (2018) Effect of Ca substitution on microwave dielectric properties of BaV2O6 ceramics. Journal of Electroceramics, 40, 144149.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Boldyreva, M.M., Pushcharovsky, D.Yu., Nekrasov, A.N. (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 23, 475481.CrossRefGoogle Scholar
Supplementary material: File

Shablinskii et al. supplementary material

Shablinskii et al. supplementary material

Download Shablinskii et al. supplementary material(File)
File 237.6 KB