Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:07:26.877Z Has data issue: false hasContentIssue false

Mcconnellite, CuCrO2 and ellinaite, CaCr2O4, from varicoloured spurrite marble of the Daba-Siwaqa area, Hatrurim Complex, Jordan

Published online by Cambridge University Press:  17 March 2021

Irina O. Galuskina*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200Sosnowiec, Poland
Marcin Stachowicz
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki I Wigury 93, 02-089Warszawa, Poland
Krzysztof Woźniak
Affiliation:
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093Warszawa, Poland
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva84105, Israel
Evgeny Galuskin
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200Sosnowiec, Poland
*
*Author for correspondence: Irina O. Galuskina, Email: [email protected]

Abstract

A common attribute of two rare natural chromium-bearing oxides: mcconnellite, CuCrO2, discovered more than 40 years ago in Guyana, and a new mineral ellinaite, CaCr2O4, described from two localities (Brazil and Israel) recently, is that these minerals are poorly studied due to their rarity and small size. Mcconnellite and ellinaite in the present study were found in varicoloured marbles of the pyrometamorphic Hatrurim Complex in the Tulul Al Hammam area, Daba-Siwaqa, Jordan. Structural data obtained for ellinaite (Pnma, a = 9.0875(2), b = 2.9698(1), c = 10.6270(3) Å and V = 286.80(2) Å3), with an empirical formula (Сa1.00Sr0.01)Σ1.01(Cr3+1.79Al0.07Ca0.04Fe3+0.04 Ti4+0.03Mg0.03)Σ2.00O4, is similar to the structural data of synthetic analogue β-CaCr2O4 but differs significantly from the data obtained for ellinaite from Brazil and Israel despite the fact that all the natural phases have a similar composition. Single-crystal X-ray diffraction data for mcconnellite from Jordan (R$\bar{3}$m, a = b = 2.9756(1) and c = 17.124(1) Å) with composition (Cu0.98Ca0.03Sr0.01)Σ1.02(Cr3+0.90Al0.05 Fe3+0.03)Σ0.98O2, is the first determination of a natural Cu-delafossite-type structure. This paper also presents the results of a single-crystal Raman study for mcconnellite and ellinaite, which indicates that the spectral features of these minerals is dependent on crystal orientation.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Aktas, O., Truong, K.D., Otani, T., Balakrishnan, G., Clouter, M.J., Kimura, T. and Quirion, T. (2012) Raman scattering study of delafossite magnetoelectric multiferroic compounds:CuFeO2 and CuCrO2. Journal Physics: Condensed Material, 24, 036003.Google ScholarPubMed
Brown, I. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Dannhauser, W. and Vaughan, P.A. (1955) The crystal structure of cuprous chromite. Journal of the American Chemical Society, 77, 896897.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2 : a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Elkhouni, T., Amami, A., Strobel, P. and Ben Salah, A. (2013) Structural, Raman spectroscopy, and magnetic ordering in new delafossite-type oxide CuCr1−xTixO2 (0 ≤ x ≤ 0.1). Journal of Superconductivity and Novel Magnetism, 26, 27952802.CrossRefGoogle Scholar
Ettler, V., Johan, Z., Křibek, B., Šebek, O. and Mihaljevič, M. (2009) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Applied Geochemistry, 24, 115.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Krüger, H., Blass, G., Widmer, R. and Galuskina, I.O. (2016) Wernerkrauseite, CaFe3+2Mn4+O6 – the first non-stoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. European Journal of Mineralogy, 28, 485493.CrossRefGoogle Scholar
Galuskin, E., Galuskina, I., Vapnik, Y. and Murashko, M. (2020) Molecular Hydrogen in Natural Mayenite. Minerals, 10, 560.CrossRefGoogle Scholar
Galuskina, I., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E. (2014) Harmunite, CaFe2O4 – a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Krüger, B., Grew, E.S., Vapnik, Y., Dzierażanowski, P. and Murashko, M. (2017) Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel – natural analogue of the SFCA phase. European Journal of Mineralogy, 29, 101116.CrossRefGoogle Scholar
Galuskina, I., Galuskin, E., Vapnik, Ye., Zeliński, G. and Prusik, K. (2021) Priscillagrewite-(Y), (Ca2Y)Zr2Al3O12 – a new garnet of the bitikleite group from the Daba-Siwaqa area, the Hatrurim Complex, Jordan. American Mineralogist, 106, 641649.CrossRefGoogle Scholar
Grottaz, O. and Kubel, F. (1996) Crystal structure of copper(I) chromium(III) oxide, 2H-CuCrO2. Zeitschrift für Kristallographie – Crystalline Materials, 211, https://doi.org/10.1524/zkri.1996.211.7.481Google Scholar
Han, M., Lu, Y., Liu, Y., Hu, Z., Chen, C., Jiang, K., Zhang, J. and Li, W. (2020) Raman scattering measurements of phonon anharmonicity in the delafossite CuGa1xCrxO2 (0 ≤ x ≤ 1) films. Journal of Raman Spectroscopy, 2020, 19.Google Scholar
Juroszek, R., Krüger, H., Galuskina, I., Krüger, B., Jeżak, L., Ternes, B., Wojdyla, J., Krzykawski, T., Pautov, L. and Galuskin, E. (2018a) Sharyginite, Ca3TiFe2O8, A new mineral from the Bellerberg Volcano, Germany. Minerals, 8, 308.CrossRefGoogle Scholar
Juroszek, R., Krüger, B., Banasik, K., Vapnik, Y. and Galuskina, I. (2018b) Raman spectroscopy and structural study of baryte-hashemite solid solution from pyrometamorphic rocks of the Hatrurim Complex, Israel. Spectrochimica Acta, A205, 582592.CrossRefGoogle Scholar
Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Vapnik, Y. and Galuskin, E. (2020a) Siwaqaite, Ca6Al2(CrO4)3(OH)12⋅26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan. American Mineralogist, 105, 409421.10.2138/am-2020-7208CrossRefGoogle Scholar
Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Tribus, M. and Kürsten, C. (2020b) Raman spectroscopy and single-crystal high-temperature investigations of bentorite, Ca6Cr2(SO4)3(OH)12⋅26H2O. Minerals, 10, 38.CrossRefGoogle Scholar
Kaminsky, F.L., Wirth, R. and Schreiber, A. (2015) A microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. The Canadian Mineralogist, 53, 83104.CrossRefGoogle Scholar
Khoury, H.N. (2020) Geochemistry of rare earth elements (REE) and redox sensitive elements (RSE) of pyrometamorphic rocks, central Jordan. Arabian Journal of Geosciences, 13, 174.CrossRefGoogle Scholar
Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Clark, I.D. (2016) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineralogy and Petrology, 110, 125140.CrossRefGoogle Scholar
Kim, J.-H., Kim, J.Y., Choi, Y.H. and Youn, D.H. (2020) Facile CuFeO2 microcrystal synthesis for lithium ion battery anodes via microwave heating. Journal of Materials Science: Materials in Electronics, 31, 94089414.Google Scholar
Kolev, N., Iliev, M.N., Popov, V.N. and Gospodinov, M. (2003) Temperature-dependent polarized Raman spectra of CaFe2O4. Solid State Communication, 128, 153155.CrossRefGoogle Scholar
Krzątała, A., Panikorovskii, T., Galuskina, I. and Galuskin, E. (2018) Dynamic disorder of Fe3+ ions in the crystal structure of natural barioferrite. Minerals, 8, 340.CrossRefGoogle Scholar
Kumar, S., Marinel, S., Miclau, M. and Martin, C. (2012) Fast synthesis of CuCrO2 delafossite by monomode microwave heating. Materials Letters, 70, 4043.CrossRefGoogle Scholar
Majee, M.K. and Bhobe, P.A. (2020) Correlation of local crystal structural and physical properties of the delafossite CuCr1−xFexO2 (0 ≤ x ≤ 1). Inorganic Chemistry, 59, 67906799.CrossRefGoogle Scholar
Miclau, M., Ursu, D., Kumar, S. and Grozescu, I (2012) Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method. Journal of Nanoparticle Research, 14, 1110.CrossRefGoogle Scholar
Milton, C., Appleman, D.E., Appleman, M.H., Chao, E.C.T., Cuttitta, F., Dinnin, J.I., Dwornik, E.J., Ingram, B.L. and Rose, H.J. Jr. (1976) Merumite – a complex assemblage of chromium minerals from Guyana. U.S. Geological Survey Professional Paper, 887, 129.Google Scholar
Monteiro, J.F.H.L., Jurelo, A.R. and Siqueira, E.C. (2017) Raman spectroscopy of the superconductor CuCrO2 delafossite oxide. Solid State Communications, 252, 6467.CrossRefGoogle Scholar
Monteiro, J.F.H.L, Siqueira, E.C., Vallis, D.S., de Andrade, E., Barcote, M.V.W. and Jurelo, A.R. (2018) Raman spectroscopy of (Fe,Li)-doped delafossite oxide CuCrO2. Vibrational Spectroscopy, 98, 7781.CrossRefGoogle Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Pabst, A. (1946) Notes on the structure of delafossite. American Mineralogist, 31, 539546.Google Scholar
Picard, L. (1931) Geological Research in the Judean Desert. Goldberg Press, Jerusalem, 108 pp.Google Scholar
Seryotkin, Y.V., Sokol, E.V., Kokh, S.N. and Sharygin, V.V. (2019) Natural bentorite-Cr3+ derivate of ettringite: determination of crystal structure. Physics and Chemistry of Minerals, 46, 553570.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sharygin, V.V. (2019) Orthorhombic CaCr2O4 in phosphide-bearing gehlenite-rankinite paralava from Hatrurim Basin, Israel: preliminary data. Conference materials: Magmatism of the Earth and Related Strategic Metal Deposits, 36, 272276.Google Scholar
Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite, Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Sharygin, V.V., Britvin, S.N., Kaminsky, F.V., Wirth, R., Nigmatulina, E.N., Yakovlev, G.A., Novoselov, K.A. and Murashko, M.N. (2020) Ellinaite, IMA 2019-091. CNMNC Newsletter No. 53; Mineralogical Magazine, 84, https://doi.or/0.118/gm.2020.5Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Shim, S.-H., Duffy, T.S., Jeanloz, R., Yoo, C.-S. and Iota, V. (2004) Raman spectroscopy and X-ray diffraction of phase transitions in Cr2O3 to 61 GPa. Physical Review, B69, 144107.CrossRefGoogle Scholar
Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O.A., Seryotkin, Y.V., Vapnik, Y. and Murashko, M.N. (2011) Chromatite and its Cr3+ -and Cr6+ -bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist, 96, 659674.CrossRefGoogle Scholar
Sokol, E.V., Kozmenko, O.A., Khoury, H.N., Kokh, S.N., Novikova, S.A., Nefedov, A.A., Sokol, I.A. and Zaikin, P. (2017) Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Research, 46, 204226.CrossRefGoogle Scholar
Stroupe, J.D. (1949) An X-ray diffraction study of the copper chromites and of the “copper-chromium oxide” catalyst. Journal of the American Chemical Society, 71, 569572.CrossRefGoogle Scholar
Töpfer, J., Trari, M., Gravereau, P., Chaminade, J.P. and Doumerc, J.P. (1995) Crystal growth and reinvestigation of the crystal structure of crednerite, CuMnO2. Zeitschrift für Kristallographie, 210, 184187.CrossRefGoogle Scholar
Zhai, S., Yin, Y., Shieh, S.R., Shan, S., Xue, W., Wang, C.-P., Yang, K. and Higo, Y. (2016) High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4. Physics and Chemistry of Minerals, 43, 307314.10.1007/s00269-015-0795-0CrossRefGoogle Scholar
Supplementary material: File

Galuskina et al. supplementary material

Galuskina et al. supplementary material

Download Galuskina et al. supplementary material(File)
File 153.4 KB