Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T23:59:36.104Z Has data issue: false hasContentIssue false

Mantle-derived sapphirine

Published online by Cambridge University Press:  05 July 2018

W. L. Griffin
Affiliation:
Mineralogisk-Geologisk Museum, Sars Gate 1, 0562, Oslo 5, Norway
S. Y. O'Reilly
Affiliation:
School of Earth Sciences, Macquarie University, North Ryde, NSW 2113, Australia

Abstract

A xenolith from the Delegate breccia pipe (New South Wales, Australia) contains sapphirine in equilibrium with aluminous clinopyroxene, garnet, and plagioclase (An48). This unusual assemblage probably developed from a clinopyroxene (±spinel ± plagioclase) cumulate during cooling from > 1400°C to c. 1000°C at pressures near 15 kbar. The sapphirine is close to the 7:9:3 composition, suggesting that bulk composition is more important than P-T conditions in determining the stoichiometry of natural sapphirines. A similar occurrence of sapphirine has also been recorded in mantlederived xenoliths from the Stockdale kimberlite in Kansas. Re-examination of sapphirine granulites from Finero suggests that their primary assemblages and origin may have been similar to those of the Delegate xenolith. Sapphirine is clearly stable under upper-mantle conditions in Ca-Al-Mg-rich bulk compositions.

Type
Silicate mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermand, D., Seifert, F., and Schreyer, W. (1975) Contrib. Mineral. Petrol, 50, 79-92.CrossRefGoogle Scholar
Anastasiou, P., and Seifert, F. (1972. Ibid. 34, 272-87.CrossRefGoogle Scholar
Carswell, D.A. (1975) Phys. Chem. Earth, 9, 417-29.CrossRefGoogle Scholar
Ellis, D.J., and Green, D.H. (1979) Contrib. Mineral. Petrol, 71, 13-22.CrossRefGoogle Scholar
Green, D.H. (1966) Earth Planet. Sci. Lett, 1, 414-20.CrossRefGoogle Scholar
Griffin, W.L., Wass, S.Y., and Hollis, J.D. (1984) J. Petrol, 25, 53-87.CrossRefGoogle Scholar
Hensen, B.J., and Green, D.H. (1973) Contrib. Mineral. Petrol, 38, 151-66.CrossRefGoogle Scholar
Irving, A.J. (1974) J. Petrol, 15, 1-40.CrossRefGoogle Scholar
Irving, A.J. (1980) Am. J. Sci, 280-A, 389-426.Google Scholar
Lensch, G. (1971) Contrib. Mineral. Petrol, 31, 145-53.CrossRefGoogle Scholar
Lovering, J.F., and White, A.J.R. (1969) . Ibid. 21, 9-52.Google Scholar
Meyer, H.O.A., and Brookins, G.D. (1976) Am. Mineral, 61, 1194-202.Google Scholar
Monchoux, P. (1972) Contrib. Mineral. Petrol, 37, 47-64.CrossRefGoogle Scholar
O'Reilly, S.Y., and Griffin, W.L. (1985) Tectonophys, 111, 41-63.CrossRefGoogle Scholar
Ozawa, K. (1984) Geochim. Cosmochim. Ada, 48, 2597-612.CrossRefGoogle Scholar
Sackij, V.S., Sobolev, N.V., and Pavljocenko, V.C. (1983) Dokl. Akad. Nauk SSSR, 272, 187-92.Google Scholar
Schreyer, W., and Abraham, K. (1975) Mineral. Mag, 40, 171-80.CrossRefGoogle Scholar
Schreyer, W., and Abraham, K. and Seifert, F. (1969) Am. J. Sci, 267-A, 407-33.CrossRefGoogle Scholar
Seifert, F. (1974) J. Geology, 82, 173-204.CrossRefGoogle Scholar
Sills, J.D., Ackermand, D., Herd, R.K., and Windley, B.F. (1983). J. Met. Geol, 1, 337-51.CrossRefGoogle Scholar
Spera, F.J. (1985) Contrib. Mineral. Petrol, 88, 217-32.CrossRefGoogle Scholar
Taylor, H.C.J. (1973) Geol. Soc. Am. Bull, 84, 1335-48.2.0.CO;2>CrossRefGoogle Scholar
Wass, S.Y., and Irving, A.J. (1976) XENMEG: A catalogue of occurrences of xenoliths and megacrysts in basic volcanic rocks of eastern Australia. Australian Museum, Sydney.Google Scholar
Wilshire, H.G. (1984) Geology, 12, 395-8.2.0.CO;2>CrossRefGoogle Scholar
Wilshire, H.G. and Pike, J.E.N. (1975. Ibid. 3, 467-70.2.0.CO;2>CrossRefGoogle Scholar
Wood, B.J. (1974) Contrib. Mineral. Petrol, 46, 1-15.CrossRefGoogle Scholar
Wood, B.J. (1976) Am. Mineral, 61, 599-602.Google Scholar