Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T23:26:36.775Z Has data issue: false hasContentIssue false

Malayaite and tin-bearing garnet from a skarn at Gumble, NSW, Australia

Published online by Cambridge University Press:  05 July 2018

I. R. Mulholland*
Affiliation:
Department of Geology and Geophysics, University of Sydney, Sydney, NSW 2006, Australia

Abstract

Malayaite and tin-bearing garnet occur within a skarn assemblage at Gumble, NSW. A metasomatic origin is proposed for these minerals under conditions of T = 300-500°C Xco2 < 0.30 and fO2 = 10−18 to 10−30 bars. Malayaite has formed as a result of reaction between a metasomatic fluid rich in Sn, F, H2O and silica, and tin-bearing andradite and wollastonite. The main requirements for tin-bearing skarn formation appear to be an F-Sn-rich granite, an iron-rich skarn assemblage, and a relatively long cooling history.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Now at: Esso Australia Ltd., Minerals Department, 127 Kent Street, Sydney, NSW 2000, Australia.

References

Amthauer, G., Mclver, J. R., and Viljoen, E. A. (1979) Phys. Chem. Minerals. 4, 235–44.CrossRefGoogle Scholar
Ashley, P. M. (1980) Econ. Geol. 75, 15–29.CrossRefGoogle Scholar
Atkinson, W. W. Jr., and Einaudi, M. T. (1978) Ibid. 1326, 65.Google Scholar
Beams, S. D. (1980) Ph.D. thesis, Latrobe University, Australia (unpubl).Google Scholar
Burt, D. M. (1978) Econ. Geol. 73, 269–82.CrossRefGoogle Scholar
Dadak, V., and Novak, F. (1965) Mineral. Mag. 35, 379–85.Google Scholar
Eadington, P. J., and Giblin, A. (1979) Tech. Comm., CS1RO Inst. of Earth Resources, 68.Google Scholar
El Sharkawi, M. A. H., and Dearman, W. R. (1966) Econ. Geol. 61, 362–9.CrossRefGoogle Scholar
Higgins, J. B., and Ribbe, P. H. (1977) Am. Mineral. 63, 801–6.Google Scholar
Hosking, K. F. G. (1965) Mining Mag. 113, 368–83.Google Scholar
Hosking, K. F. G. (1970) Mineral. Sci. Eng. 2, 24–50.Google Scholar
Kwak, T. A. P., and Tan, T. H. (1981) Econ. Geol. 76, 468–9.CrossRefGoogle Scholar
Lessing, P., and Standish, R. P. (1973) Am. Mineral. 58, 840–2.Google Scholar
Mclver, J. R., and Mihalik, P. (1975) Can. Mineral. 13, 217–21.Google Scholar
Miyahisa, M., Ishibashi, K., and Adachi, T. (1975) J. Jap Assoc. Mineral. Petrol Econ. Geol. 70, 25–9.(in Japanese).CrossRefGoogle Scholar
Mulholland, I. R. (1979) B.Sc. (Hons.) thesis, University of Sydney, Australia (unpubl.).Google Scholar
Mulligan, R., and Jambor, J. L. (1968) Can. Mineral. 9, 358–70.Google Scholar
Reid, J. E. (1978) Econ. Geol. 73, 1315–25.CrossRefGoogle Scholar
Takenouchi, F. D. (1971) Mineral. Deposita. 6, 335–47.CrossRefGoogle Scholar
Verkaeren, J. (1971) Bull. Soc.fr. Mineral. Cristallogr. 94, 492–9.Google Scholar
Verkaeren, J. and Bartholome, P. (1979) Econ. Geol. 74, 53–66.CrossRefGoogle Scholar