Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T09:45:44.322Z Has data issue: false hasContentIssue false

Majzlanite, K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulfate mineral with complex cation substitutions from Tolbachik volcano

Published online by Cambridge University Press:  22 October 2019

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200Russia
Evgeny V. Nazarchuk
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Vladimir V. Shilovskikh
Affiliation:
Geomodel Centre, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: [email protected]

Abstract

A new mineral majzlanite, ideally K2Na(ZnNa)Ca(SO4)4, was found in high-temperature exhalative mineral assemblages in the Yadovitaya fumarole, Second scoria cone of the Great Tolbachik Fissure Eruption (1975–1976), Tolbachik volcano, Kamchatka Peninsula, Russia. Majzlanite is associated closely with langbeinite and K-bearing thénardite. Majzlanite is grey with a bluish tint, has a white streak and vitreous lustre. The mineral is soluble in warm water. Majzlanite is monoclinic, C2/c, a = 16.007(2), b = 9.5239(11), c = 9.1182(10) Å, β = 94.828(7)°, V = 1385.2(3) Å3 and Z = 16. The eight strongest lines of the X-ray powder diffraction pattern are [d, Å (I, %)(hkl)]: 3.3721(40)($\bar{3}$12), 3.1473(56)($\bar{4}$02), 3.1062(65)($\bar{2}$22), 2.9495(50)($\bar{1}$31), 2.8736(100)($\bar{1}$13), 2.8350(70)(421), 2.8031(45)(511) and 2.6162(41)($\bar{5}$12). The following structural formula was obtained: K2Na(Zn0.88Na0.60Cu0.36Mg0.16)(Ca0.76Na0.24)(S0.98Al0.015Si0.005O4)4. The chemical composition determined by electron-microprobe analysis is (wt.%): Na2O 9.73, K2O 15.27, ZnO 11.20, CaO 7.03, CuO 4.26, MgO 1.07, Al2O3 0.47, SO3 51.34, SiO2 0.12, total 100.49. The empirical formula calculated on the basis of 16 O apfu is K1.99Na1.93Zn0.84Ca0.77Cu0.33Mg0.16(S3.94Al0.06Si0.01)O16 and the simplified formula is K2Na(Zn,Na,Cu,Mg)Σ2(Ca,Na)(SO4)4. No natural or synthetic compounds directly chemically and/or structurally related to majzlanite are known to date. The topology of the heteropolyhedral framework in majzlanite is complex. An interesting feature of the structure of majzlanite is an edge-sharing of ZnO6 octahedra with SO4 tetrahedra.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Balić-Žunić, T., Garavelli, A., Jakobsson, S.P., Jonasson, K., Katerinopoulos, A., Kyriakopoulos, K., Acquafredda, P. (2016) Fumarolic minerals: An overview of active European volcanoes. Pp. 267322 in: Updates in Volcanology - From Volcano Modelling to Volcano Geology. IntechOpen, London.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proceedings of the Russian Mineralogical Society, 146, 104107.Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.Google Scholar
Ðorðević, T., Wittwer, A. and Krivovichev, S.V. (2015) Three new alluaudite-like protonated arsenates: NaMg3(AsO4)(AsO3OH)2, NaZn3(AsO4)(AsO3OH)2 and Na(Na0.6Zn0.4)Zn2(H0.6AsO4)(AsO3OH)2. European Journal of Mineralogy, 27, 559573.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge Univ. Press, New York.Google Scholar
Giacovazzo, C., Scandale, E. and Scordari, F. (1976) The crystal structure of chlorothionite CuK2Cl2SO4. Zeitschrift für Kristallographie – Crystalline Materials, 144, 226237.CrossRefGoogle Scholar
Grevel, K.D., Majzlan, J., Benisek, A., Dachs, E., Steiger, M., Fortes, A.D. and Marler, B. (2012) Experimentally determined standard thermodynamic properties of synthetic MgSO4⋅4H2O (Starkeyite) and MgSO4⋅3H2O: a revised internally consistent thermodynamic data set for magnesium sulfate hydrates. Astrobiology, 12, 10421054.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Anhydrous sulphates. I. Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. The Canadian Mineralogist, 13, 181187.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. The Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Hess, H. and Keller, P. (1980) Die kristallstruktur von queitit, Pb4Zn2(SO4)(SiO4)(Si2O7). Zeitschrift für Kristallographie, 151, 287299.Google Scholar
Kovrugin, V.M., Nekrasova, D.O., Siidra, O.I., Mentré, O., Masquelier, C., Stefanovich, S.Yu. and Colmont, M. (2019) Mineral-inspired crystal growth and physical properties of Na2Cu(SO4)2, and review of Na2M(SO4)2(H2O)x (x = 0–6) compounds. Crystal Growth and Design, 19, 12331244.CrossRefGoogle Scholar
Majzlan, J., Grevel, K.-D., Kiefer, B. and Johnson, M.B. (2017) Thermodynamics and crystal chemistry of rhomboclase, (H5O2)Fe(SO4)2⋅2H2O, and the phase (H3O)Fe(SO4)2 and implications for acid mine drainage. American Mineralogist, 102, 643654.CrossRefGoogle Scholar
Mereiter, K. (2013) Redetermination of tamarugite, NaAl(SO4)2⋅6(H2O). Acta Crystallographica, E69, i63i64.Google Scholar
Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E., Ferraris, G. (2012) Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,□)18O38, a new member of the crichtonite group. European Journal of Mineralogy, 24, 10611067.CrossRefGoogle Scholar
Nazarchuk, E.V., Siidra, O.I., Agakhanov, A.A., Lukina, E.A., Avdontseva, E.Y., Karpov, G.A. (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulphate mineral from the Tolbachik volcano. Mineralogical Magazine, 82, 12331241.CrossRefGoogle Scholar
Nazarchuk, E.V., Siidra, O.I., Nekrasova, D.O., Borisov, A.S. and Shilovskikh, V.V. (2019) Glikinite, IMA 2018-119. CNMNC Newsletter No. 47, February 2019, page 202; European Journal of Mineralogy, 31, 199204.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2016) Philoxenite, IMA 2015-108. CNMNC Newsletter No. 30, April 2016, page 410; Mineralogical Magazine, 80, 407413.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Pushcharovsky, D.Y., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Britvin, S.N. (2018) Cryptochalcite, K2Cu5O(SO4)5, and cesiodymite, CsKCu5O(SO4)5, two newisotypic minerals and the K–Cs isomorphism in this solid-solution series. European Journal of Mineralogy, 30, 593607.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystalographica, 71, 38.Google ScholarPubMed
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. I. Markhininite, TlBi(SO4)2. Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R., Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik Vulcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Siidra, O.I., Lukina, E.A., Nazarchuk, E.V., Depmeier, W., Bubnova, R.S., Agakhanov, A.A., Avdontseva, E.Yu., Filatov, S.K. and Kovrugin, V.M. (2018a) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineralogical Magazine, 82, 257274.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2018b) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Lukina, E.A., Zaitsev, A.N., Shilovskikh, V.V. (2018c) Belousovite, KZn(SO4)Cl, a new sulfate mineral from the Tolbachik volcano with apophyllite sheet-topology. Mineralogical Magazine, 82, 10791088.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N. and Shilovskikh, V.V. (2018d) Majzlanite, IMA 2018-016. CNMNC Newsletter No 43, June 2018, page 784; Mineralogical Magazine, 82, 779785.Google Scholar
Siidra, O.I., Borisov, A.S., Lukina, E.A., Depmeier, W., Platonova, N.V., Colmont, M. and Nekrasova, D.O. (2019a) Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3. Physics and Chemistry of Minerals, 4, 403416.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Vlasenko, N.S. (2019b) Koryakite, NaKMg2Al2(SO4)6, a new anhydrous sulfate mineral from Tolbachik volcano. Mineralogical Magazine, DOI: https://doi.org/10.1180/mgm.2019.69CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. Journa of Volcanology and Seismology, 6, 281289.CrossRefGoogle Scholar
Wildner, M. and Giester, G. (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineralogy and Petrology, 39, 201209.CrossRefGoogle Scholar
Zittlau, A.H., Shi, Q., Boerio-Goates, J., Woodfield, B.F. and Majzlan, J. (2013) Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Geochemistry, 73, 3950.CrossRefGoogle Scholar
Supplementary material: File

Siidra et al. supplementary material

Siidra et al. supplementary material

Download Siidra et al. supplementary material(File)
File 282 KB