Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T13:07:27.558Z Has data issue: false hasContentIssue false

Magnetic spectroscopy of nanoparticulate greigite, Fe3S4

Published online by Cambridge University Press:  02 January 2018

Richard A. D. Pattrick*
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre, The University of Manchester, Manchester M13 9PL, UK
Victoria S. Coker
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre, The University of Manchester, Manchester M13 9PL, UK
Masood Akhtar
Affiliation:
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
M. Azad Malik
Affiliation:
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Edward Lewis
Affiliation:
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Sarah Haigh
Affiliation:
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Paul O'Brien
Affiliation:
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Padraic C. Shafer
Affiliation:
Advanced Light Source, Lawrence Berkeley National Labs, Berkeley, CA, USA
Gerrit van der Laan
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre, The University of Manchester, Manchester M13 9PL, UK Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE, UK
*

Abstract

Synthesis of Ni and Zn substituted nano-greigite, Fe3S4, is achieved from single source diethyldithiocarbamato precursor compounds, producing particles typically 50–100 nm in diameter with plate-like pseudohexagonal morphologies. Up to 12 wt.% Ni is incorporated into the greigite structure, and there is evidence that Zn is also incorporated but Co is not substituted into the lattice. The Fe L3 X-ray absorption spectra for these materials have a narrow single peak at 707.7 eV and the resulting main X-ray magnetic circular dichroism (XMCD) has the same sign at 708.75 eV. All XMCD spectra also have a broad positive feature at 711 eV, a characteristic of covalent mixing. The greigite XMCD spectra contrast with the three clearly defined XMCD site specific peaks found in the ferrite spinel, magnetite. The Fe L2,3X-ray absorption spectra and XMCD spectra of the greigite reflect and reveal the high conductivity of greigite and the very strong covalency of the Fe–S bonding. The electron hopping between Fe3+ and Fe2+ on octahedral sites results in an intermediate oxidation state of the Fe in the Oh site of Fe2.5+ producing an effective formula of [Fe3+ ↑]A-site[2Fe2.5+ ↓]B-siteS42–]. The Ni L2,3 X-ray absorption spectra and XMCD reveal substitution on the Oh site with a strongly covalent character and an oxidation state <Ni1.5+ in a representative formula [Fe3+ ↑]A[[(2 – x)Fe2.5+ ↓][Nix1.5+]]BS42–.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulwahab, K.O., Malik, M.A., O'Brien, P., Timco, G. A., Tuna, F., Muryn, C.A., Winpenny, R.E.P., Pattrick, R.A.D., Coker, V.S. and Arenholz, E. (2014) A one-pot synthesis of monodispersed iron cobalt oxide and iron manganese oxide nanoparticles from bimetallic pivalate clusters. Chemistry of Minerals, 26, 9991013.Google Scholar
Akhtar, M., Akhter, J., Malik, M.Z., O'Brien, P., Tuna, F., Raftery, J. and Helliwell, M. (2011) Deposition of iron sulfide nanocrystals from single source precursors. Journal Materials Chemistry, 21, 97379745.CrossRefGoogle Scholar
Arenholz, E. and Prestemon, S.O. (2005) Design and performance of an eight-pole resistive magnet for soft X-ray magnetic dichroism measurements. Review of Scientific Instruments, 76, 083908/1-8.CrossRefGoogle Scholar
Bauer, E., Man, Ka.L., Pavlovska, P., Locatelli, A., Mentes, T.O., Niño, M.A. and Altman, M.S. (2014) Fe3S4 (greigite) formation by vapor-solid reaction. Journal Materials Chemistry, A, 2, 19031913.CrossRefGoogle Scholar
Bazylinski, D.A., Frankel, R.B., Heywood, B.R., Mann, S., King, J.W., Donaghay, P.L. and Hanson, A.K. (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Applied Environmental Microbiology, 61, 32323239.CrossRefGoogle Scholar
Beal, J.H.L., Prabakar, S., Gaston, N., Teh, G.B., Etchegoin, P.G., Williams, G. and Tilley, R.D. (2011) Synthesis and comparison of the magnetic properties of iron sulfide spinel and iron oxide spinel nanocrystals. Chemistry of Materials, 23, 25142517.CrossRefGoogle Scholar
Beal, J.H.L., Etchegoin, P.G. and Tilley, R.D. (2012) Synthesis and characterisation of magnetic iron sulfide nanocrystals. Journal of Solid State Chemistry, 189, 5762.CrossRefGoogle Scholar
Byrne, J.M., Coker, V.S., Cespedes, E., Wincott, P.L., Vaughan, D.J., Pattrick, R.A.D., van der Laan, G., Arenholz, E., Tuna, F., Bencsik, M. et al. (2014) Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic properties. Advanced Functional Materials, 24, 25182529.CrossRefGoogle Scholar
Chang, L., Roberts, A.P., Tang, Y., Rainford, B.D., Muxworthy, A.R. and Chen, Q. (2008) Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal Geophysical Research, 113, B06104, 116.CrossRefGoogle Scholar
Chang, L., Rainford, B.D., Stewart, J.R., Ritter, C., Roberts, A.P., Tang, Y and Chen, Q. (2009a) Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. Journal Geophysical Research, 114, B07101, 110.CrossRefGoogle Scholar
Chang, L., Roberts, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q. and Horng, C.S. (2009b) Low-temperature magnetic properties of greigite (Fe3S4). Geochemistry Geophysics Geosystems, 10, Q01Y04, 114.CrossRefGoogle Scholar
Chang, Yo-S., Savitha, S., Sadhasivam, S., Hsu, C-K. and Lin, F-H. (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. Journal of Colloid and Interface Science, 363, 314319.CrossRefGoogle ScholarPubMed
Chang, L., Pattrick, R.A.D., van der Laan, G., Coker, V.S. and Roberts, A.P. (2012a) Enigmatic X-ray magnetic circular dichroism in greigite, Fe3S4. The Canadian Mineralogist, 50, 667674.CrossRefGoogle Scholar
Chang, L., Winklhofer, M., Roberts, A.P., Dekkers, M.J., Horng, C.-S., Hu, L. and Chen, Q.W. (2012b) Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8) and non-interacting titanomagnetite (Fe3-xTixO4). Geochemistry, Geophysics, Geosystems, 13, Q05Z41, 119.CrossRefGoogle Scholar
Charnock, J.M., Henderson, C.M.B., Mosselmans, J.F.W. and Pattrick, R.A.D. (1996) 3d transition metal L-edge X-ray absorption studies of the dichalcogenides of Fe, Co and Ni. Physics and Chemistry of Minerals, 23, 403–08.CrossRefGoogle Scholar
Coey, J.M.D., Spender, M.R. and Morrish, A.H. (1970) The magnetic structure of the spinel, Fe3S4 . Solid State Communications, 8, 16051608.CrossRefGoogle Scholar
Coker, V.S., Pearce, C.I., Pattrick, R.A.D., van der Laan, G., Telling, N.D., Charnock, J.M. and Lloyd, J.R. (2008) Probing the site occupancies of Co-, Ni-, and Mn-substituted biogenic magnetite using XAS and XMCD. American Mineralogist, 93, 11191132.CrossRefGoogle Scholar
Coker, V.S., Telling, N.D., van der Laan, G., Pattrick, R.A. D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R. and Lloyd, J.R. (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano, 3, 19221928.CrossRefGoogle ScholarPubMed
Dekkers, M.J., Passier, H.F and Schoonen, M.A.A. (2000) Magnetic properties of hydrothermally synthesized greigite (Fe3S4) II. Hig-and low-temperature characteristics. Geophysical Journal International, 141, 809819.CrossRefGoogle Scholar
Devey, A.J., Grau-Crespo, R. and de Leeuw, N.H. (2009) Electronic and magnetic structure of Fe3S4. GGA + U investigation. Physical Review B, 79, 195126, 17.Google Scholar
Dunlop, D.J. and Özdemir, Ö. (1997) Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, UK, 573 pp.CrossRefGoogle Scholar
Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T. A. and Norris, D.J. (2005) Doping semiconductor nanocrystals. Nature, 436, 9194.CrossRefGoogle ScholarPubMed
Frank, U., Nowaczyk, N.R. andNegendank, J.F.W. (2007) Geomagnetism, rock magnetism and palaeomagnet-ism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International, 168, 904920.CrossRefGoogle Scholar
Gibbs, G.V., Cox, D.F., Rosso, K.M., Ross, N.L., Downs, R.T. and Spackman, M.A. (2007) Theoretical electron density distributions for Fe-and Cu-Sulfide Earth materials: A connection between bond length, bond critical point properties, local energy densities, and bonded interactions. Journal of Physics and Chemistry 111, 19231931.CrossRefGoogle ScholarPubMed
Gota, S., Gautier-Soyer, M. and Sacchi, M. (2000) Fe 2p absorption in magnetic oxides: Quantifying angular-dependent saturation effects. Physical Review B, 62, 41874190.CrossRefGoogle Scholar
Han, W. and Gao, M. (2008) Investigations on iron sulfide nano sheets prepared via a single-source precursor approach. Crystal Growth and Design, 8, 10231030.CrossRefGoogle Scholar
Haverkort, M.W., Zwierzycki, M. and Andersen, O.K. (2012) Multiplet ligand-field theory using Wannier orbitals. Physical Review B, 85, 165113, 120.Google Scholar
Heywood, B.R., Mann, S. and Frankel, R.B. (1991) Structure, morphology and growth of biogenic greigite (Fe3S4). Materials Research Society Symposium Proceedings, 218, 93108.CrossRefGoogle Scholar
Hoggins, J.T. and Steinfink, H.E. (1976) Empirical bonding relationships in metal-iron-sulfide com-pounds. Inorganic Chemistry, 15, 16821685.CrossRefGoogle Scholar
Lefevre, C.T., Menguy, N., Abreu, F., Lins, U., Pósfai, M., Prozorov, T., Pignol, D., Frankel, R.B. and Bazylinski, D.A. (2011) A cultured greigite-producing magneto-tactic bacterium in a novel group of sulfate-reducing bacteria. Science, 334, 17201723.CrossRefGoogle Scholar
Letard, I., Sainctavit, P., Menguy, N., Valet, J.-P., Isambert, A., Dekkers, M. and Gloter, A. (2005) Mineralogy of greigite, Fe3S4 . Physica Scripta, T115, 489491.CrossRefGoogle Scholar
Letard, I., Sainctavit, P., Cartier dit Moulin, C., Kappler, J-P., Ghigna, P., Gatteschi, D. and Doddi, D. (2007) Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 K. Journal Applied Physics, 101, 11392, 16.CrossRefGoogle Scholar
Lewis, D.J., Tedstone, A.A., Zhong, X.I., Lewis, E.A., Rooney, A.I., Savjani, N., Brent, J.R., Haigh, S.J., Burke, M.G., Muryn, A. et al. (2015) Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chemistry of Materials, 27, 13671374.CrossRefGoogle Scholar
Lyubutin, I.S., Starchikov, S.S., Lin, C-R., Lu, S-Z., Shaikh, M.O., Funtov, K.O., Dmitrieva, T.V., Ovchinnikov, S.G., Edelman, I.S. and Ivantsov, R. (2013) Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. Journal Nanoparticles Research, 15, 1397, 113.CrossRefGoogle Scholar
Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A. and Jannasch, H.W. (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258261.CrossRefGoogle Scholar
Pattrick, R.A.D., van der Laan, G., Henderson, C.M.B., Kuiper, P., Dudzik, E., Vaughan, D.J. (2002) Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: Developing a method for mineralogists. European Journal of Mineralogy, 14, 10951102.CrossRefGoogle Scholar
Pattrick, R.A.D., Coker, V.S., Pearce, C.I., Telling, N.D. and van der Laan, G. (2008) The oxidation state of copper and cobalt in carrollite, CuCo2S4 . The Canadian Mineralogist, 46, 13171322.CrossRefGoogle Scholar
Pattrick, R.A.D., Coker, V.S., Pearce, C.I., Telling, N.D., van der Laan, G. and Lloyd, J.R. (2012) Extracellular bacterial production of doped magnetite nanoparticles. Nanoscience: Nanostructures Through Chemistry, 1, 102111.CrossRefGoogle Scholar
Pérez-Dieste, V., Crain, J.N., Kirakosian, A., McChesney, J.L., Arenholz, E., Young, A.T., Denlinger, J.D., Ederer, D.L., Callcott, T.A., Lopez-Rivera, S.A. et al. (2004) Unoccupied orbitals of 3d transition metals in ZnS. Physcial Review B, 70, 085205, 15.Google Scholar
Pósfai, M., Cziner, K, Marion, E.,Márton, P., Buseck, P. R., Frankel, R.B. and Bazylinski, D.A. (2001) Crystal-size distributions and possible biogenic origin of Fe sulphides. European Journal of Mineralogy, 13, 691703.CrossRefGoogle Scholar
Qian, X.F., Zhang, X.M., Wang, C., Xie, Y Wang, W.Z. and Qian, Y.T. (1999) The preparation and phase transition of nanocrystalline iron sulfides via toluene-thermal process. Materials Science and Engineering, 64, 170173.CrossRefGoogle Scholar
Reynolds, R.L., Tuttle, M.L., Rice, C.A., Fishman, N.S., Karachewski, J.A. and Sherman, D.S. (1994) Magnetization and geochemistry of greigite bearing Cretaceous strata, North Slope Basin, Alaska. American Journal Science, 294, 485528.CrossRefGoogle Scholar
Rickard, D. and Luther III, G.W (2007) Chemistry of iron sulfides. Chemical Reviews, 107, 514562.CrossRefGoogle ScholarPubMed
Roberts, A.P. and Weaver, R. (2005) Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231, 263277.CrossRefGoogle Scholar
Roberts, A.P., Jiang, W.T., Florindo, F., Horng, C.S. and Laj, C. (2005) Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophysical Research Letters, 32, L05307, 14.CrossRefGoogle Scholar
Roberts, A.P., Chang, L., Rowan, C.J., Horng, C-S. and Florindo, F (2011) Magneticpropertiesof sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, RG1002, 146.Google Scholar
Roldan, A., Santos-Carballa, D. and de Leeuw, N.H. (2013) A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4 . Journal of Chemical Physics, 138, 204712.CrossRefGoogle ScholarPubMed
Rowan, C.J., Roberts, A.P. and Broadbent, T. (2009) Paleomagnetic smoothing and magnetic enhancement in marine sediments due to prolonged early diagenetic growth of greigite. Earth and Planetary Science Letters, 277, 223235.CrossRefGoogle Scholar
Russell, M.J. and Martin, W. (2004) The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358363.CrossRefGoogle ScholarPubMed
Russell, M.J., Hall, A.J., Boyce, A.J. and Fallick, A.E. (2005) On hydrothermal convection systems and the emergence of life. Economic Geology, 100, 419438.Google Scholar
Schoonen, M.A.A. and Barnes, H.L. (1991) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochimica et Cosmochimica Acta, 55, 15051514.CrossRefGoogle Scholar
Schuler, D. and Frankel, R.B. (1999) Bacterial magneto-somes: microbiology, biomineralization and biotech-nological applications. Applied Microbiology and Biotechnology, 52, 464473.Google Scholar
Skinner, B.J., Erd, R.C. and Grimaldi, F.S. (1964) Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49, 543555.Google Scholar
Snowball, I.F. and Torii, M. (1999) Incidence and significance of ferrimagnetic iron sulphides in Quaternary studies. Pp. 199230 in: Quaternary Climates and Magnetism (Maher, B.A. and R. Thompson, editors). Cambridge University Press, Cambridge, UK.Google Scholar
Stadelmann, P. (2003) Image analysis and simulation software in transmission electron microscopy. Microscopy and Microanalysis, 9, 6061.CrossRefGoogle Scholar
van der Laan, G. (2013) Applications of soft X-ray magnetic dichroism. Journal of Physics, Conference Series, 430, 012127, 120.CrossRefGoogle Scholar
van der Laan, G. and Figueroa, A.I. (2014) X-ray magnetic circular dichroism — a versatile tool to study magnetism. Coordination Chemistry Reviews, 277–278, 95129.CrossRefGoogle Scholar
van der Laan, G. and Thole, B.T (1991) Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Physical Review B, 43, 1340113411.CrossRefGoogle ScholarPubMed
van der Laan, G., Zaanen, J., Sawatsky, G.A., Karnatak, R. and Esteva, J-M. (1986) Comparison of X-ray absorption spectroscopy with X-ray photoemission of nickel dihalides and NiO. Physical Review B, 33, 42534264.CrossRefGoogle Scholar
van der Laan, G., Henderson, C.M.B., Pattrick, R.A.D., Dhesi, S.S., Schofield, P.F., Dudzik, E. and Vaughan, D.J. (1999) Orbital polarization in NiFe2O4 measured by Ni-2p X-ray magnetic circular dichroism. Physical Review B, 59, 43144321.CrossRefGoogle Scholar
Vanitha, P.V and O'Brien, P. (2008) Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster. Journal of American Chemistry Society, 130, 1725617257.CrossRefGoogle ScholarPubMed
Vasiliev, I., Franke, C., Meedijk, J.D., Dekkers, M.J., Langereis, C.R. and Krijgsman, W. (2008) Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 1, 782786.CrossRefGoogle Scholar
Vaughan, D.J. and Craig, J.R. (1978) Mineral Chemistry of Metal Sulfides. Cambridge University Press, Cambridge.Google Scholar
Vaughan, D.J. and Craig, J.R. (1985) The crystal chemistry of iron-nickel thiospinels. American Mineralogist, 70, 10361043.Google Scholar
Vaughan, D.J. and Tossell, J.A. (1981) Electronic structure of thiospinel minerals: Results from MO calculations. American Mineralogist, 66, 12501253.Google Scholar
Vaughan, D.J., Burns, R.G. and Burns, V.M. (1971) Geochemistry and bonding of thiospinel minerals. Geochimica et Cosmochimica Acta, 35, 365381.CrossRefGoogle Scholar
Wagner, T. and Cook, N.J. (1999) Carrollite and related minerals of the linnaeite group: Solid solutions and nomenclature in the light of new data from the Siegerland district, Germany. The Canadian Mineralogist, 37, 545558.Google Scholar
Wang, Y.S., Thomas, P.J. and O'Brien, P. (2006) Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. Journal of Physical Chemistry B, 110, 2141221415.Google Scholar
Yamaguchi, S. and Wada, H. (1970) Magnetic anisotropy of Fe3S4 as revealed by electron diffraction. Journal of Applied Physics, 41, 18731874.CrossRefGoogle Scholar
Supplementary material: Image

Pattrick et al. supplementary material

Supplementary Fig 1

Download Pattrick et al. supplementary material(Image)
Image 106.5 KB
Supplementary material: Image

Pattrick et al. supplementary material

Supplementary Fig 2

Download Pattrick et al. supplementary material(Image)
Image 167.9 KB