Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T03:27:03.796Z Has data issue: false hasContentIssue false

Magnetic hausmannite from hydrothermally altered manganese ore in the Palaeoproterozoic Kalahari manganese deposit, Transvaal Supergroup, South Africa

Published online by Cambridge University Press:  05 July 2018

J. Gutzmmer
Affiliation:
Department of Geology, Rand Afrikaans University, P.O.Box 524, Auckland Park 2006, South Africa
N. J. Beukes
Affiliation:
Department of Geology, Rand Afrikaans University, P.O.Box 524, Auckland Park 2006, South Africa
A. S. E. Kleyenstuber
Affiliation:
MINTEK, Private Bag X3015, Randburg 2125, South Africa
A. M. Burger
Affiliation:
MINTEK, Private Bag X3015, Randburg 2125, South Africa

Abstract

Hausmannite (Mn3O4), a manganese oxide with a tetragonally distorted spinel structure, is considered to be ferrimagnetic with a very low Curie temperature of 42.5 K. However, strongly magnetic hausmannite has been discovered in some of the hydrothermally altered high-grade manganese ores of the giant Kalahari manganese deposit in South Africa. EDS-electron microprobe analyses indicate magnetic hausmannite to contain on average between 3 and 11.3 wt.% Fe2O3. In contrast non-magnetic hausmannite contains on average about 1–3 wt.% Fe2O3. X-ray powder diffraction analyses reveal small changes in cell dimensions of the magnetic hausmannite related to the high iron content. Mössbauer spectroscopy suggests that all iron is in the trivalent state. Optical microscopy and scanning electron microscopy (electron back-scatter imaging) proved the magnetic hausmannite to be homogeneous in composition, containing only a few minute inclusions of hematite. Magnetic blocking temperatures of the iron-rich hausmannite, approximating the Curie temperature, are of the order of 750 K. It is suggested that the ferrimagnetic state of hausmannite is stabilized and enhanced by replacement of Mn3+ by Fe3+.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benoit, P.H. (1987) Adaption to microcomputer of the Appleman-Evans program for indexing and least-square refinement of powder-diffraction data for unit-cell dimension. Amer. Mineral., 72, 1018–9.Google Scholar
Beukes, N.J. (1983) Palaeoenvironmental setting of iron formations in the depositional basin of the Transvaal Supergroup, South Africa. In Iron formations, facts and problems (Trendall, A.F. and Morris, R.C., eds.). Elsevier, Amsterdam: 131-209.Google Scholar
Bonnet, A., Delapalme, A. and Tcheou, F. (1974) I. Proceedings of the International Conference on Magnetism, 5, 605.Google Scholar
Boucher, B., Buhl, R. and Perrin, M. (1970) Proprietes et structure magnetique de Mn3O4. J. Phys. Chem. Sol, 32, 2429-37.CrossRefGoogle Scholar
Butler, R.F. (1992) Palaeomagnetism. Blackwell, Cambridge, 319 pp.Google Scholar
Fan, D., Hariya, Y., Li, J., Miura, H., and Ye, J. (1993) Study on strongly metamorphosed ferro-manganese oxide minerals in Wafangzi deposit P.R. China. Resource Geoi, 17, 50–6.Google Scholar
Frenzel, G. (1980) The manganese ore minerals. In The geology and geochemistry of manganese (Varentsov, I.M. and Grasselly, G., eds.). Schweizerbarth, Stuttgart, 1, 25–157.Google Scholar
Goodenough, J.B.(1966) Magnetism and the chemical bond. Interscience Publishers, New York, 393 pp.Google Scholar
Gutzmer, J. (1993) Hydrothermale Alteration von Manganerzen der Nchwaning Mine, Kalahari Manganerzfeld, Siidafrika. M.Sc. thesis (unpubl.), TU Clausthal, Clausthal-Zellerfeld, 161 pp.Google Scholar
Gutzmer, J. and Beukes, N.J. (1993) Fault controlled hematitization and upgrading of manganese ores in the Kalahari manganese field, South Africa. In Extended Abstracts 16th Colloquium of African Geology, (Maphalala, R. and Mabuza, M., eds.). Geological Survey and Mines Mbabane, Swaziland, 139-41.Google Scholar
Halba, P., Khilla, M.A. and Kripicka, S. (1973) On the miscibility gap of spinels MnxFe3_xO4+y . J. Phys. Chem. Sol., 34, 387–95.CrossRefGoogle Scholar
Kasper, J.S. (1959) Magnetic structure of hausmannite, Mn3O4. Bull. Amer. Phys. Soc, Series 2, 4, 178.Google Scholar
Kleyenstiiber, A.S.E. (1984) A regional mineralogical study of the manganese bearing Voelwater Subgroup in the Northern Cape Province. PhD thesis (unpubl.), RAU, Johannesburg, 328 pp.Google Scholar
Mason, B. (1943) Mineralogical aspects of the system FeO-Fe2O3-MnO-Mn2O3. Geol. Foren. Forhandl, Norway, 65, 95–180.Google Scholar
Matsubara, S., Kato, A. and Nagashima, K. (1979) Iwakiite, Mn2+(Fe3+, Mn3+)2O4, a new tetragonal spinelloid mineral from the Gozaisho mine, Fukushima Prefecture. Mineral. J. Japan, 9, 383.CrossRefGoogle Scholar
National Bureau of Standards (U.S.) (1972) National Bureau of Standards Monograph, 25, 38.Google Scholar
Nel, C.J., Beukes, N.J. and De Villiers, J.P.R. (1986) The Mamatwan mine of the Kalahari manganese field. In Mineral deposits of Southern Africa (Anhaeusser, C.R. and Maske, S., eds.). 1, 963–78.Google Scholar
Osawa, S., Kikuchi, T. and Hariya, Y. (1992) Phase equilibria in the system MnFe2O4 — Mn3O4 . Mineral. J. Japan, 16, 28–39.CrossRefGoogle Scholar
Oles, A., Kajzar, F., Kucab, M. and Sikora, W. (1976) Magnetic structures determined by neutron diffraction. Warzow, 727 pp.Google Scholar
Smit, J. and Wijn, H.P.J. (1959). Ferrites. Philips Technical Library, Almeloh, 369 pp.Google Scholar
Tanaka, T. (1974) Lattice constant and nonstoichiometry in Mn-Fe ferrites. Japan. J. Appl. Phys., 13, 1235–7.CrossRefGoogle Scholar
van Hook, H.J. and Keith, M.L. (1958) The system Mn3O4-Fe3O4. Amer. Mineral., 43, 69–83.Google Scholar
Wickham, D.G. (1969) The chemical composition of spinels in the system Fe3O4—Mn3O4. J. Inorg. Nucl. Chem., 31, 313–20.CrossRefGoogle Scholar
Yamazaki, T., Katsura, I. and Marumo, K. (1991) Origin of stable remanent magnetization of siliceous sediments in the central equatorial Pacific. Earth Planet. Sci. Lett., 105, 81–93.CrossRefGoogle Scholar