Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:56:54.587Z Has data issue: false hasContentIssue false

Magnesioleydetite and straβmannite, two new uranyl sulfate minerals with sheet structures from Red Canyon, Utah

Published online by Cambridge University Press:  28 May 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt, 18-2, 119071, Moscow, Russia
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
*
*Author for correspondence: Anthony R. Kampf, Email: [email protected]

Abstract

Magnesioleydetite (IMA2017-063), Mg(UO2)(SO4)2·11H2O, and straβmannite (IMA2017-086), Al(UO2)(SO4)2F·16H2O, are two new minerals from mines in Red Canyon, San Juan County, Utah, USA. Magnesioleydetite occurs in the Markey mine and straβmannite occurs in both the Markey and Green Lizard mines. Both minerals are secondary phases found in efflorescent crusts on the surfaces of mine walls. Magnesioleydetite occurs in irregular aggregates (to ~0.5 mm) of blades (to ~0.2 mm) exhibiting the following properties: transparent to translucent; pale green–yellow colour; vitreous lustre; white streak; non-fluorescent; brittle; Mohs hardness ≈ 2; irregular fracture; one perfect cleavage on {001}; and calculated density = 2.463 g/cm3. Straβmannite occurs in irregular aggregates (to ~0.5 mm) of equant crystals (to ~0.2 mm) exhibiting the following properties: transparent; light yellow–green colour; vitreous to greasy lustre; nearly white streak; bright greenish-blue fluorescence; somewhat brittle, Mohs hardness ≈ 1½; irregular fracture; one good cleavage on {001}; measured and calculated densities of 2.20(2) and 2.173 g/cm3, respectively; optically biaxial (–); α = 1.477(2), β = 1.485(2) and γ = 1.489(2) (white light); 2Vmeas. = 72(2)°; dispersion r > v (slight); orientation Y = b, Xc = 20° (in obtuse β); pleochroism with X = nearly colourless, Y = pale green–yellow and Z = light green–yellow (X < Y < Z). The empirical formulas for magnesioleydetite and straβmannite are (Mg0.56Fe0.26Zn0.11Mn0.01)Σ0.94(U0.99O2)(S1.015O4)2·11H2O and Al1.00Na0.16(U0.99O2)(S1.00O4)2[F0.58(OH)0.42]·16H2O, respectively. Magnesioleydetite is monoclinic, C2/c, a = 11.3513(3), b = 7.7310(2), c = 21.7957(15) Å, β = 102.387(7)°, V = 1868.19(16) Å3 and Z = 4. Straβmannite is monoclinic, C2/c, a = 11.0187(5), b = 8.3284(3), c = 26.6727(19) Å, β = 97.426(7)°, V = 2427.2(2) and Z = 4. The structures of magnesioleydetite (R1 = 0.016 for 2040 I > 2σI reflections) and straβmannite (R1 = 0.0343 for 2220 I > 2σI reflections) each contain uranyl-sulfate sheets based on the protasite-anion topology.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey Krivovichev

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Brittain, H.G., Ansari, P., Toivonen, J., Niinisto, L., Tsao, L. and Perry, D.L. (1985) Photophysical studies of uranyl complexes. VIII. Luminiscence spectra of UO2SO4·3½H2O and two polymorphs of bis(urea) uranyl sulfate. Journal of Solid State Chemistry, 59, 259264.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.Google Scholar
Bullock, H. and Parret, F.W. (1970) The low frequency infrared and Raman spectroscopic studies of some uranyl complexes: the deformation frequency of the uranyl ion. Canadian Journal of Chemistry, 48, 30953097.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39, 841874.Google Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015 a) Bobcookite, NaAl(UO2)2(SO4)4·18H2O and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015 b) Fermiite, Na4(UO2)(SO4)3·3H2O and oppenheimerite, Na2(UO2)(SO4)2·3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.Google Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015 c) Plášilite, Na(UO2)(SO4)(OH)·2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2017 a) Klaprothite, péligotite and ottohahnite, three new sodium uranyl sulfate minerals with bidentate UO7–SO4 linkages from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine 81, 753779.Google Scholar
Kampf, A., Plášil, J., Kasatkin, A., Marty, J., Čejka, J. and Lapčák, L. (2017 b). Shumwayite, [(UO2)(SO4)(H2O)2]2·H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 81, 273285.Google Scholar
Kampf, A., Plášil, J., Kasatkin, A., Marty, J. and Čejka, J. (2018 a) Markeyite, a new calcium uranyl carbonate mineral from the Markey mine, San Juan County, Utah, USA. Mineralogical Magazine, 82, 10891100.Google Scholar
Kampf, A., Plášil, J., Nash, B. and Marty, J. (2018 b) Greenlizardite, (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, a new mineral with phosphuranylite-type uranyl sulfate sheets from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 82, 401411.Google Scholar
Kampf, A.R., Plášil, J., Nash, B.P. and Marty, J. (2018 c) Meitnerite, (NH4)(UO2)(SO4)(OH)·2H2O, a new uranyl-sulfate mineral with a sheet structure. European Journal of Mineralogy, 30, 9991006.Google Scholar
Kampf, A., Olds, T., Plášil, J., Marty, J. and Perry, S. (2019) Feynmanite, a new sodium uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 83(2), 153160.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Lussier, A.J., Lopez, A.K. and Burns, P.C. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian Mineralogist, 54, 177283.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Ohwada, K. (1976) Infrared spectroscopic studies of some uranyl nitrate complexes. Journal of Coordination Chemistry, 6, 7580.Google Scholar
Olds, T., Sadergaski, L., Plášil, J., Kampf, A., Burns, P., Steele, I. and Mills, O. (2017). Leószilárdite, the first Na,Mg-containing uranyl carbonate from the Markey Mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, 10391050.Google Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.Google Scholar
Plášil, J., Kasatkin., A.V., Škoda, R., Novák, M., Kallistová, A., Dušek, M., Skála, R., Fejfarová, K., Čejka, J., Meisser, N., Goethals, H., Machovič, V. and Lapčák, L. (2013) Leydetite, Fe(UO2)(SO4)2(H2O)11, a new uranyl sulfate mineral from Mas d'Alary, Lodève, France. Mineralogical Magazine, 77, 429441.Google Scholar
Plášil, J., Meisser, N. and Čejka, J. (2016) The crystal structure of Na6[(UO2)(SO4)4](H2O)4: X-ray and Raman spectroscopy study. The Canadian Mineralogist, 54, 520.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3175 in: Electron Probe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York. Electron Probe Quantitation. Plenum Press, New York.Google Scholar
Quilès, F. and Burneau, A. (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vibrational Spectroscopy, 18, 6175.Google Scholar
Serezhkin, V.N., Soldatkina, M.A. and Efremov, V.A. (1981) Crystal structure of MgUO2(SO4)2·11H2O. Zhurnal Strukturnoi Khimii, 22, 174177.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Unruh, D., Gojdas, K., Flores, E., Libo, A. and Forbes, T. (2013) Synthesis and structural characterization of hydrolysis products within the uranyl iminodiacetate and malate systems. Inorganic Chemistry, 52, 1019110198.Google Scholar
Volkovich, V.A., Griffiths, T.R., Fray, D.J. and Fields, M. (1998) Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 17, 8391.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 1

Download Kampf et al. supplementary material(File)
File 285.3 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 2

Download Kampf et al. supplementary material(File)
File 628.3 KB