Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T10:18:09.875Z Has data issue: false hasContentIssue false

Magnesiohögbomite-6N12S, Mg5Al11TiO23(OH), a new högbomite-group mineral from the DeWitts Corners, Ontario, Canada

Published online by Cambridge University Press:  31 March 2021

Inna Lykova*
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, OntarioK1P 6P4, Canada
Ralph Rowe
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, OntarioK1P 6P4, Canada
Glenn Poirier
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, OntarioK1P 6P4, Canada
Gerald Giester
Affiliation:
Institute of Mineralogy and Crystallography, University of Vienna, Vienna A–1090, Austria
Kate Helwig
Affiliation:
Canadian Conservation Institute, 1030 Innes Road, Ottawa, OntarioK1B 4S7, Canada
*
*Author for correspondence: Inna Lykova, Email: [email protected]

Abstract

The new högbomite-group mineral magnesiohögbomite-6N12S, ideally Mg5Al11TiO23(OH), was found in calcite “vein-dikes” at the DeWitts Corners occurrence, lots 10 and 11, concession 1, Bathurst Township, Ontario, Canada. It forms tabular and short-prismatic crystals up to 5 mm in size. The major forms are pinacoid {0001} and hexagonal pyramid {11${\bar 2}$1}, sometimes modified by hexagonal prism {11${\bar 2}$0}. The associated minerals are magnesiohögbomite-2N3S, spinel, corundum, diopside, magnesio-hastingsite, pargasite, clinochlore and calcite. Magnesiohögbomite-6N12S is dark brown to black with brown streak and vitreous lustre. It has no cleavage and its fracture is uneven. The Mohs hardness is 6½. Dcalc is 3.87 g/cm3. The infrared spectrum is reported. The composition (wt.%) is MgO 13.09, ZnO 0.46, FeO 11.91, Fe2O3 6.84, Al2O3 62.70, TiO2 4.44, H2O 0.99, total 100.43. The empirical formula calculated on the basis of 17 cations, excluding H+, is (Mg2.95Fe2+1.51Al0.49Zn0.05)Σ5(Al10.71Fe3+0.78Ti0.51)Σ12O23(OH). The simplified formula is (Mg,Fe)5(Al,Fe,Ti)12O23(OH). The mineral is trigonal, R${\bar 3}$m, a = 5.7194(2), c = 83.069(5) Å, V = 2353.3(2) Å3 and Z = 6. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 2.921(26)(0.1.23), 2.863(49)(110), 2.687(29)(0.1.26), 2.547(31)(0.1.$\overline{28}$) and 2.434(100)(1.1.18). The crystal structure was solved and refined from single-crystal X-ray diffraction data to R1 = 0.022. It is composed of alternating spinel (S) and nolanite (N) modules in the sequence 3 × (NSSNSS). The sequence of cubic ‘c’ and hexagonal ‘h’ closed-packed oxygen layers is 3 × (cccccchcccch). It is the first polysome in the högbomite supergroup with such a sequence.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Charles A Geiger

References

Armbruster, T. (1998) Zincohögbomite-8H from Samos (Greece): crystal structure, polysomatism and polytypism in högbomite related structures. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 461468.Google Scholar
Armbruster, T. (2002) Revised nomenclature of högbomite, nigerite, and taaffeite minerals. European Journal of Mineralogy, 14, 389395.10.1127/0935-1221/2002/0014-0389CrossRefGoogle Scholar
Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and phi-rho-Z procedures. Pp. 239246 in: Microbeam Analysis (Newbury, D.E., editor). San Francisco Press, USA.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Cámara, F., Cossio, R., Regis, D., Cerantola, V., Ciriotti, M.E. and Compagnoni, R. (2018) Beltrandoite, a new root-name in the högbomite supergroup: the Mg end-member magnesiobeltrandoite-2N3S. European Journal of Mineralogy, 30, 545558.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer International Publishing, Cham, Switzerland, 1109 pp.10.1007/978-3-319-25349-7CrossRefGoogle Scholar
Chukanov, N.V., Krzhizhanovskaya, M.G., Jančev, S., Pekov, I.V., Varlamov, D.A., Göttlicher, J., Rusakov, V.S., Polekhovsky, Yu.S., Chervonnyi, A.D. and Ermolaeva, V.N. (2018) Zincovelesite-6N6S, Zn3(Fe3+,Mn3+,Al,Ti)8O15(OH), a new högbomite-supergroup mineral from Jacupica mountains, Republic of Macedonia. Mineralogy and Petrology, 112, 733742.10.1007/s00710-018-0555-1CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O⋯O hydrogen bonds. Acta Crystallographica, B44, 341344.10.1107/S0108768188001648CrossRefGoogle Scholar
Hejny, C. and Armbruster, T. (2002) Polysomatism in högbomite: The crystal structures of 10T, 12H, 14T, and 24R polysomes. American Mineralogist, 87, 277292.10.2138/am-2002-2-309CrossRefGoogle Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G.M. and Stalke, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination Journal of Applied Crystallography, 48, 310.10.1107/S1600576714022985CrossRefGoogle ScholarPubMed
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.10.1007/BF03354882CrossRefGoogle Scholar
Lykova, I., Rowe, R., Poirier, G., Giester, G. and Helwig, K. (2020) Magnesiohögbomite-6N12S, IMA 2020-029, CNMNC Newsletter No. 56; Mineralogical Magazine, 84, 623627, https://doi.org/10.1180/mgm.2020.60Google Scholar
Mandarino, J.A. (1981) The Gladstone–Dale relationship: part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Martin, R.F. and Schumann, D. (2019) A silicocarbonatitic melt and spinel-bearing dunite of crustal origin at the Parker Phlogopite Mine, Notre-Dame-du-Laus, Quebec, Canada. Minerals, 9, 613.10.3390/min9100613CrossRefGoogle Scholar
McKie, D. (1963) The högbomite polytypes. Mineralogical Magazine, 33, 563580.10.1180/minmag.1963.033.262.03CrossRefGoogle Scholar
Nel, H.J. (1949) Hoegbomite from the corundum fields of the eastern Transvaal, Union of South Africa. Geological Survey Memoir, 43, 17.Google Scholar
Rowe, R. (2009) New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software. Powder Diffraction, 24, 263271.10.1154/1.3193683CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Shimura, T., Akai, J., Lazic, B., Armbruster, T., Shimizu, M., Kamei, A., Tsukada, K., Owada, M. and Yuhara, M. (2012) Magnesiohögbomite-2N4S; a new polysome from the central Sor Rondane Mountains, East Antarctica. American Mineralogist, 97, 268280.10.2138/am.2012.3827CrossRefGoogle Scholar
Wynne-Edwards, H.R. (1972) The Grenville Province. Pp. 263335 in: Variation in Tectonic Styles in Canada (Price, R. and Douglas, R., editors). Special Paper; The Geological Association of Canada: St. John's, NL, Canada.Google Scholar
Supplementary material: File

Lykova et al. supplementary material

Lykova et al. supplementary material

Download Lykova et al. supplementary material(File)
File 45.6 KB