Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T10:54:02.195Z Has data issue: false hasContentIssue false

Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia

Published online by Cambridge University Press:  05 July 2018

A. R. Chakhmouradian
Affiliation:
Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
R. H. Mitchell
Affiliation:
Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1

Abstract

Apatite-dolomite carbonatite at Lesnaya Varaka, Kola Peninsula, Russia, hosts intricate mineral intergrowths composed of lueshite in the core and pyrochlore-group minerals in the rim. Lueshite is a primary Nb-bearing phase in the carbonatite and ranges in composition from cerian lueshite to almost pure NaNbO3. For comparison, the compositional variation of lueshite from the Kovdor and Sallanlatvi carbonatites is described. At Lesnaya Varaka, lueshite is replaced by nearly stoichiometric Na-Ca pyrochlore due to late-stage re-equilibration in the carbonatite system. X-ray powder diffraction data for both minerals are presented. Barian strontiopyrochlore, occurring as replacement mantles on Na-Ca pyrochlore, contains up to 43% Sr and 8–18% Ba at the A-site, and shows a high degree of hydration and strong ionic deficiency at the A- and Y-sites. This mineral is metamict and, upon heating, recrystallises to an aeschynite-type structure. Monazite-(Ce) found as minute crystals in fractures, represents the solid solution between monazite-(Ce) CePO4, brabantite CaTh(PO4)2 and SrTh(PO4)2. Our data indicate the high capacity of the monazite structure for Th and accompanying divalent cations at low temperatures and pressures that has a direct relevance to solving the problem of long-term conservation of radioactive wastes. Monazite-(Ce) and barian strontiopyrochlore are products of low-temperature hydrothermal or secondary (hypergene) alteration of the primary mineral assemblage of the carbonatite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, V.B. (1961) The crystal structure of fersmite. Doklady AN SSSR, Earth Sci. Sect., 132, 597600.Google Scholar
Bagdasarov, Yu. A., Gaidukova, V.S., Kuznetsova, N.N. and Sidorenko, G.A. (1962) A find of lueshite in Siberian carbonatites. Doklady AN SSSR, 147, 1168–71 (in Russian).Google Scholar
Brusset, H., Gillier-Pandraud, H. and Voliotis, S.D. (1971) Etude du polymorphisme du metaniobate de strontium SrNb2O6 (A study of polymorphism of strontium metaniobate SrNb2O6). Mat. Res. Bull., 6, 514.CrossRefGoogle Scholar
Bulakh, A.G. and Ivanikov, V.V. (1996) Carbonatites of the Turiy Peninsula, Kola: role of magmatism and of metasomatism. Canad. Mineral., 34, 403–9.Google Scholar
Bulakh, A.G., Kukharenko, A.A., Knipovich, Yu.N., Kondrat'eva, V.V., Baklanova, K.A., Baranova, E.N. (1960) Some new minerals in carbonatites of the Kola Peninsula. Mater. God. Sessii Uchenogo Sov. VSEGEI (Mat. Ann. Sci. Coincil Meeting), 1959, 114–6.(in Russian). Abstracted in Amer. Mineral., 47, 1483.Google Scholar
Chakhmouradian, A.R., Yakovenchuk, V.N., Mitchell, R.H. and Bogdanova, A.N. (1997) Isolueshite, a new mineral of the perovskite group from the Khibina alkaline complex. Eur. J. Mineral., 9, 483–90.CrossRefGoogle Scholar
Cummings, J.P. and Simonsen, S.H. (1970) The crystal structure of calcium niobate (CaNb2O6). Amer. Mineral., 55, 90–7.Google Scholar
Epshtein, E.M., Danil'chenko, N.A. and Nechelyustov, G.N. (1991) Hypogenic bariopyrochlore from a carbonatite complex. Zap. Vses. Mineral. Obshch., 120, 74–9 (in Russian).Google Scholar
Ercit, T.S., Hawthorne, F.C. and Cerny, P. (1994) The structural chemistry of kalipyrochlore, a ‘hydropyrochlore’. Canad. Mineral., 32, 415–20.Google Scholar
Gorzhevskaya, S.A., Sidorenko, G.A. and Ginzburg, A.I. (1974) Titano-tantalo-niobates. Nedra Press, Moscow (in Russ.), 344 pp.Google Scholar
Graeser, S., Schwander, H., Hanni, H. and Mattioli, V. (1979) Vigezzite, (Ca, Ce)(Nb, Ta, Ti)2O6, a new aeschynite-type mineral from the Alps. Mineral. Mag., 43, 459–62.CrossRefGoogle Scholar
Harmer, R.E. and Gittins, J. (1997) Dolomitic carbonatite parental magmas. Ottawa'97 GAC/MAC Ann. Meeting, Prog. Abstr., A 64.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatites. In Carbonatites: Genesis and Evolution (Bell, K., ed), Unwin Hyman, London, 105–48.Google Scholar
Jago, B.C. and Gittins, J. (1993) Pyrochlore crystallization in carbonatites: the role of fluorine. South African J. Geol, 96 (3), 149–59.Google Scholar
Kapustin, Yu.L. (1980) Mineralogy of Carbonatites. Amerind Pubishing Co, New Delhi, 259 pp.Google Scholar
Kapustin, Yu.L. (1984) Carbonate relationships in metasomatically dolomitized carbonatite zones. Doklady AN SSSR, Earth Sci. Sect. 268, 112–5.Google Scholar
Kirillov, A.S. & Burova, T.A. (1967) Lueshites from carbonatites of the Kola Peninsula. In Mineralogy and Geochemistry (2). Leningrad Univ. Press, Leningrad, 2839 (in Russian).Google Scholar
Krylov, E.I. and Alekseev, Yu.I. (1954) Strontium metaniobate and its hydrates. J. Gen. Chem. USSR, 24, 1883–6.Google Scholar
Krylov, E.I. and Alekseev, Yu.I. (1955) Calcium and barium metaniobates and their hydrates. J. Gen. Chem. USSR, 25, 1013–6.Google Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Il'inskii, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia. Nedra Press, Leningrad (in Russian), 772 pp.Google Scholar
Kukharenko, A.A., Orlova, M.P. and Bagdasarov, E.A. (1969) Alkaline gabbroids of Karelia. Leningrad University Press, Leningrad (in Russ.), 184 pp.Google Scholar
Lapin, A.V. and Kulikova, I.M. (1989) Processes of pyrochlore alteration and their products in the carbonatite weathering crusts. Zap. Vses. Mineral. Obshch., 118, 41–9 (in Russian).Google Scholar
Lapin, A.V., Malyshev, A.A., Ploshko, V.V. and Cherepivskaya, G.Ye. (1988) Strontiopyrochlore from lateritic weathered mantle of carbonatite. Doklady AN SSSR, Earth Sci. Sect., 290, 188–92.Google Scholar
Lottermoser, B.G. (1990) Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24, 151–67.CrossRefGoogle Scholar
Lottermoser, B.G. and England, B.M. (1988) Compositional variation in pyrochlores from the Mt. Weld carbonatite laterite, Western Australia. Mineral. Petrol., 38, 37–51.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Amer. Mineral., 80, 732–43.CrossRefGoogle Scholar
Mariano, A.N. (1989) Nature of economic mineralization in carbonatites and related rocks. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 149–76.Google Scholar
Mariano, A.N., Lumpkin, G.R. and Leung, S.H.F. (1997) Ideal and defect pyrochlores from the Araxa carbonatite complex and laterite, Alto Paranaiba Province, Brasil. Ottawa'97 GAC/MAC Ann. Meeting, Prog. Abstr., A 97.Google Scholar
Mitchell, R.H. (1996) Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks. In: Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A.P. Wall, F. and Williams, C.T., eds), Chapman & Hall, London, 4176.Google Scholar
Mitchell, R.H. and Vladykin, N.V. (1993) Rare earth element-bearing tausonite and potassium barium titanates from the Little Murun potassic alkaline complex, Yakutia, Russia. Mineral. Mag., 57, 651-64.CrossRefGoogle Scholar
Orlova, M.P., Rozhdestvenskiy, Yu.P. and Baranova, E.N. (1963) On the mineralogy of rare-metal carbonatites of the Sallanlatvi massif (northern Karelia). Trudy VSEGEI, New Ser., 96, 320 (in Russian).Google Scholar
Parker, R.L. and Sharp, W.N. (1970) Mafic-ultramafic igneous rocks and associated carbonatites of the Gem Park Complex, Custer and Fremont Counties, Colorado. US Geol. Surv. Prof. Paper, 649, 24 p.Google Scholar
Petruk, W. and Owens, D.R. (1975) Electron microprobe analyses for pyrochlore from Oka, Quebec. Canad. Mineral., 13, 282–5.Google Scholar
Podor, R. and Cuney, M. (1997) Experimental study of Th-bearing LaPO4 (780°C, 200 Mpa): Implications for monazite and actinide orthophosphate stability. Amer. Mineral., 82, 765–71.CrossRefGoogle Scholar
Rimskaya-Korsakova, O.M., Burova, T.A. and Kamenetskiy, V.A. (1963) Lueshite from carbonatites of the Kovdor massif. Zap. Vses. Mineral. Obshchest., 92, 173–83 (in Russian).Google Scholar
Rose, D. (1980) Brabantite, CaTh[PO4]2, a new mineral of the monazite group. Neues Jahrb. Mineral. Mh., 247–57.Google Scholar
Safiannikoff, A. (1959) Un nouveau mineral de niobium (A new mineral of niobium). Acad. Roy. Sciences d'Outre-Mer, Bull. Seances, 5, 1251–5.Google Scholar
Shabalin, B.G. (1981) Synthesis conditions of rynersonite, fersmite and their isostructural equivalents. Mineral. Zhurnal, 3, 86–9 (in Russian).Google Scholar
Subbotin, V.V. and Men'shikov, Yu.P. (1987) Accessory lueshite and viggezite from Sebljavr carbonatites. In Mineral Assemblages and Minerals of Magmatic Complexes of the Kola Peninsula. Kola Sci. Centre Press, Apatity, Russia, 6976 (in Russian).Google Scholar
Subbotin, V.V. and Mikhaelis, S.A. (1986) Genetic types of apatite ores of the Sebljavr complex deposit. In Deposits of Non-metallic Resources in the Kola Peninsula. Kola Sci. Centre Press, Apatity, Russia, 2735 (in Russian).Google Scholar
Van Wambeke, L. (1978) Kalipyrochlore, a new mineral of the pyrochlore group. Amer. Mineral., 63, 528–30.Google Scholar
Voloshin, A.V., Pakhomovskii, Ya.A., Pushcharovskii, D.Yu., Nadezhina, T.N., Bakhchisaraitsev, A.Yu. and Kobiashev, Yu.S. (1989) Strontian pyrochlore: Composition and structure.New data on minerals (Trudy Mineral. Muz. AN SSSR), 36, 1224.(in Russian).Google Scholar
Wall, F., Williams, C.T. and Woolley, A.R. (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineral. Mag., 60, 731–50.CrossRefGoogle Scholar
Williams, C.T. (1996) The occurence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineral. Mag., 60, 639–46.CrossRefGoogle Scholar
Williams, C.T. and Kogarko, L.N. (1996) New data on rare-meta l mineraliz ation in the Guli massif carbonatites, Arctic Siberia. Geokhimiya, 1996(6), 483–91 (in Russian).Google Scholar
Whiston, C.D. and Smith, A.J. (1967) Double oxides containing niobium or tantalum. II. Systems involving strontium or barium. Acta Crystal., 23, 82–4.CrossRefGoogle Scholar
Zaitsev, A. and Bell, K. (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites. Contrib. Mineral. Petrol., 121, 324–35.CrossRefGoogle Scholar
Zaitsev, A. and Polezhaeva, L. (1994) Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: their genesis and application for calcite-dolomite geothermometry. Contrib. Mineral. Petrol., 115, 339–44.CrossRefGoogle Scholar