Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T23:01:26.519Z Has data issue: false hasContentIssue false

Ludwigite from central Sweden: new data and crystal structure refinement

Published online by Cambridge University Press:  05 July 2018

P. W. U. Appel
Affiliation:
Geological Survey of Denmark and Greenland, Thoravej 8, DK-2400 NV, Copenhagen, Denmark
M. F. Brigatti
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Largo S. Eufemia 19, I-41100, Modena, Italy

Abstract

Ludwigite from B-bearing iron ores in the Bergslagen area of central Sweden and in the coastal area north of Stockholm has been studied using chemical and single-crystal diffraction techniques. Structure refinements, completed for three crystals showing slightly different Al contents, in the space group Pbam (agreement factor: 2.42 ≤ R ≤ 2.79) indicate that: (1) octahedral M1, M2 and M3 bond distances are similar, although the calculated site population suggests that M1 and M2 are nearly completely occupied by Mg whereas M3 also contains Fe2+ and Fe3+; (2) in the M4 octahedron Fe3+ and Al dominate over Mg (and Fe2+); and (3) the distortion parameter, BLD, indicates that M3 is the most regular, whereas M4 is the most distorted octahedron.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anovitz, L.M. and Grew, E.S., eds. (1996) Mineralogy, petrology and geochemistry of boron: an introduction. In Boron, Mineralogy, Petrology and Geochemistry, Reviews in Mineralogy, (Min. Soc. America), 33, 140.CrossRefGoogle Scholar
Bertaut, E.F. (1950) Structures des boroferrites. Acta Crystallogr., 3, 473–4.CrossRefGoogle Scholar
Bonazzi, P. and Menchetti, S. (1989) Contribution to the crystal chemistry of the minerals of the ludwigite-vonsenite series. Neues Jahrb. Miner. Mh, 1989, 6983.Google Scholar
Burns, P.C., Cooper, M.A. and Hawthorne, F.C. (1994) Jahn-Teller-distorted Mn3+O6 octahedra in fredrikssonite, the fourth polymorph of Mg2Mn3+(BO3)O2 . Canad. Mineral., 32, 397403.Google Scholar
Cavalho da Silva, J., Clark, J.R. and Christ, C.L (1955) Crystal structure of ludwigite, Mg2Fe3+BO3O2 . Geol. Soc. Amer. Bull., 66, 1540–1.Google Scholar
Fleischer, M. and Mandarino, J.A. (1995) Glossary of Mineral Species 1995. The Mineralogical Record, Tucson, Arizona.Google Scholar
Geijer, P. (1927) Some mineral associations from the Norberg District. Sver. Geol. Unders. Ser. C, 343, 32 pp.Google Scholar
Geijer, P. (1939) The paragenesis of ludwigite in Swedish Iron Ores. Geol. Foren Forh. Stockholm, 61, 1933.CrossRefGoogle Scholar
Hawthorne, F.C. (1986) Structural hierarchy in VIMx IIITyϕz minerals. Canad. Mineral., 24, 625–42.Google Scholar
Hawthorne, F.C. and Grice, J.D., eds. (1990) Crystal structure analysis as a chemical analytical method: application to light elements. Canad. Mineral., 28, 693702.Google Scholar
Hawthorne, F.C., Burns, P.C. and Grice, J.D. (1996) The crystal chemistry of boron. In: Boron, mineralogy, petrology and geochemistry, Reviews in Mineralogy, (Min. Soc. America), 33, 41115 CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C., eds. (1974) International Tables for X-ray Crystallography, IV. The Kynoch Press, Birminghan, UK.Google Scholar
Magnusson, N.H. (1929) Nordmarks malmtrakt. Sver. geol. Unders. Ser. Ca., 23, 98 pp.Google Scholar
Merlino, S. and Perchiazzi, N. (1988) Modular mineralogy in the cuspidine group of minerals. Canad. Mineral., 26, 933–43.Google Scholar
Mokeyeva, V.L. (1968) Refinement of structure of ludwigite (Mg1.85 Fe0.15 2+)(Fe0.60 3+ Al0.40)BO3O2 and distribution of Mg2+ and Fe2+ among the cation sites of the structure. Geochem. Intern., 5, 809–13.Google Scholar
Moore, P.B. and Araki, T. (1976) Painite, CaZrB[Al9O18]: Its crystal structure and relation to jeremejevite, B5[□3Al6(OH)3 O15], and fluoborite, B3[Mg9(F, OH)9 O9]. Amer. Mineral., 61, 8894.Google Scholar
Norrestam, R., Dahl, S. and Bovin, J.-O. (1989 a) The structure of magnesium-aluminium ludwigite, Mg2.11Al0.31Fe0.53Ti0.05Sb0.01BO5, a combined single crystal X-ray and HREM strudy. Zeits. Kristallogr., 187, 201–11.CrossRefGoogle Scholar
Norrestam, R., Nielsen, K., Søtofte, I. and Thorup, N. (1989 b) Structural investigation of two synthetic oxyborates: the mixed magnesium-manganese and the pure cobalt ludwigites, Mg1.93(2) Mn1.07(2) O2BO3 and Co3O2BO3 . Zeits. Kristallogr., 189, 3341.CrossRefGoogle Scholar
Renner, B. and Lehmann, G. (1986) Correlation of angular and bond length distortion in TO4 unit in crystals. Zeits. Kristallogr., 175, 4359.Google Scholar
Sheldrick, G.M. (1997) The SHELX-97 manual. University of Göttingen, Germany.Google Scholar
Siemens, (1993) XSCANS System-technical Reference. Siemens Analytical X-ray. Instruments.Google Scholar
Swinnea, J.S. and Steinfink, H. (1983) Crystal structure and Mössbauer spectrum of vonsenite, 2FeO x FeBO3 . Amer. Mineral., 68, 827–32.Google Scholar
Takéuchi, Y. and Kogure, T.(1992) The structure type of ludwigite. Zeits. Kristallogr., 200, 161–7.CrossRefGoogle Scholar
Takéuchi, Y., Watanabé, T. and Ito, T. (1950) The crystal structures of warwickite, ludwigite and pinakiolite. Acta Crystallogr., 3, 98107.CrossRefGoogle Scholar
Venkatakrishnan, V. and Buerger, M.J. (1972) The crystal structure of FeCoOBO3 . Zeits. Kristallogr., 135, 321–38.CrossRefGoogle Scholar