Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T04:59:55.924Z Has data issue: false hasContentIssue false

Lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup

Published online by Cambridge University Press:  02 January 2018

Ferdinando Bosi*
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale A. Moro, 5, I-00185 Rome, Italy
Henrik Skogby
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden
Marco E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Ciriè, Torino, Italy
Petr Gadas
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Milan Novák
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Jan Cempírek
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Dalibor Všianský
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Jan Filip
Affiliation:
Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
*

Abstract

Lucchesiite, CaFe32+Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in the Ratnapura District, Sri Lanka (6°35'N, 80°35'E), most probably from pegmatites and in Mirošov near Strážek, western Moravia, Czech Republic, (49°27'49.38"N, 16°9'54.34"E) in anatectic pegmatite contaminated by host calc-silicate rock. Crystals are black with a vitreous lustre, conchoidal fracture and grey streak. Lucchesiite has a Mohs hardnessof ∼7 and a calculated density of 3.209 g/cm3 (Sri Lanka) to 3.243 g/cm3 (Czech Republic). In plane-polarized light, lucchesiite is pleochroic (O = very dark brown and E = light brown) and uniaxial (–). Lucchesiite is rhombohedral, space group R3m, a ≈ 16.00 Å, c ≈ 7.21 Å, V ≈ 1599.9 Å3, Z = 3. The crystal structure of lucchesiite was refined to R1 ≈ 1.5% using ∼2000 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis for the Sri Lanka (holotype) and Czech Republic (cotype) samples resulted in the empirical formulae, respectively: X(Ca0.69Na0.30K0.02)∑1.01Y(Fe1.442+Mg0.72Al0.48Ti0.334+V0.023+Mn0.013+Zn0.01)∑3.00Z(Al4.74Mg1.01Fe0.253+)∑6.00[T(Si5.85Al0.15)∑6.00O18](BO3)3V(OH)3W[O0.69F0.24(OH)0.07]∑1.00and X(Ca0.49Na0.450.05 K0.01)∑1.00Y(Fe1.142+Fe0.953+Mg0.42Al0.37Mn0.03Ti0.084+Zn0.01)∑3.00Z(Al5.11Fe0.383+Mg0.52)∑6.00[T(Si5.88Al0.12)∑6.00O18](BO3)3V[(OH)2.66O0.34]∑3.00W(O0.94F0.06)∑1.00.

Lucchesiite is an oxy-species belonging to the calcic group of the tourmaline supergroup. The closest end-member composition of a valid tourmaline species is that of feruvite, to which lucchesiite is ideally related by the heterovalent coupled substitution ZAl3++O1O2–ZMg2+ + O1(OH)1–. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA 2015-043).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreozzi, G.B., Bosi, F. and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist, 93, 658666.CrossRefGoogle Scholar
Bačík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., Klementová, M. and Ďuďa, R. (2013) Oxy-schorl, Na(Fe2 +2Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Pribyslavice, Czech Republic. American Mineralogist, 98, 485492.CrossRefGoogle Scholar
Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 10371044.CrossRefGoogle Scholar
Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343351.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335344.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 10541063.CrossRefGoogle Scholar
Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg) (Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 14421448.CrossRefGoogle Scholar
Bosi, F., Balic-Zunic, T. and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra's Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist, 95, 510518.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Skogby, H. (2012a) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O 18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 20242030.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Agrosì, G. and Scandale, E. (2012b) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d'Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist, 97, 989994.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Sklyarov, E.V. (2013a) Oxy- vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O: crystal structure and redefinition of the 'vanadium-dravite' tourmaline. American Mineralogist, 98, 501505.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y and Hawthorne, F.C. (2013b) Fluor-elbaite, Na(Li1. 5Al1. 5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297303.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Reznitskii, L. and Hålenius, U. (2014a) Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 218224.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L., Skogby, H. and Hålenius, U. (2014b) Vanadio-oxy-chromium-dravite, NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 11551162.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Agrosì, G. and Scandale, E. (2015a) Fluor-tsilaisite, NaMn3Al6(Si6O18) (BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89101.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Hålenius, U. and Skogby, H. (2015b) Experimental evidence for partial Fe +disorder at the Yand Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineralogical Magazine, 79, 515528.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Lazor, P., Reznitskii, L. (2015c) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Physics and Chemistry of Minerals, 42, 441–53.CrossRefGoogle Scholar
Cempírek, J., Houzar, S., Novák, M., Groat, L.A., Selway, J.B. and Šrein, V (2013) Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czech Republic. Journal ofGeosciences, 58, 149162.CrossRefGoogle Scholar
Clark, C.M., Hawthorne, F.C. and Ottolini, L. (2011) Fluor-dravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. The Canadian Mineralogist, 49, 5762.CrossRefGoogle Scholar
Dahanayake, K. (1980) Modes of occurrence and provenance of gemstones of Sri Lanka. Mineralium Deposita, 15, 8186.CrossRefGoogle Scholar
Demirel, S., Gonciioglu, M.C., Topuz, G. and Isik, Y (2009) Geology and chemical variations in tourmaline from the quartz-tourmaline breccias within the Kerkenez granite-monzonite Massif, Central Anatolian Crystalline complex, Turkey. The Canadian Mineralogist, 47, 787799.CrossRefGoogle Scholar
Dissanayake, C.B. and Rupasinghe, M.S. (1993) A prospectors’ guide map to the gem deposits of Sri Lanka. Gems and Gemology, 29, 173181.CrossRefGoogle Scholar
Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F. Jr., Wright, S.E., Brandstatter, F andMarler, B. (2002) Polyhedron distortions in tourmaline. The Canadian Mineralogist, 40, 153162.CrossRefGoogle Scholar
Ertl, A., Baksheev, I.A., Giester, G., Lengauer, C.L., Prokofiev, V.Yu. and Zorina, L.D. (2016a) Bosiite, NaFe33+(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new ferric member of the tourmaline supergroup from the Darasun gold deposit, Transbaikalia, Russia. European Journal of Mineralogy, 28, 581591.CrossRefGoogle Scholar
Ertl, A., Kolitsch, U., Dyar, M.D., Meyer, H.-P., Rossman, G.R., Henry, D.J., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L., Tillmanns, E. and Niedemayr, G. (2016b) Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. European Journal of Mineralogy, 28, 163177.CrossRefGoogle Scholar
Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J. and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe +-rich schorl. Geochimica et Cosmochimica Acta, 86, 239256.CrossRefGoogle Scholar
Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist, 74, 422431.Google Scholar
Gadas, P., Novák, M., Cempírek, J., Filip, J., Vašinová Galiová, M., Groat, L.A. and Všianský, D. (2014) Mineral assemblages, compositional variation, and crystal structure of feruvitic tourmaline from a contaminated anatectic pegmatite at Mirošov near Strážek, Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 52, 285301.CrossRefGoogle Scholar
Gebert, W. and Zemann, J. (1965) Messung des Ultrarot-Pleochroismus von Mineralen II. Der Pleochroismus der OH-Streckfrequenz in Turmalin. Neues Jahrbuch für Mineralogie, Monatshefte, 8, 232235.Google Scholar
Gonzales-Carreño, T., Fernández, M. and Sanz, J. (1988) Infrared and electron microprobe analysis of tourmaline. Physics and Chemistry of Minerals, 15, 452–60.CrossRefGoogle Scholar
Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 245266.Google Scholar
Grice, J.D. and Robinson, G.W. (1989) Feruvite, a new member of the tourmaline group, and its crystal structure. The Canadian Mineralogist, 27, 199203.Google Scholar
Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.CrossRefGoogle Scholar
Hawthorne, F.C. and Henry, D. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.CrossRefGoogle Scholar
Henry, D. J. and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? The Canadian Mineralogist, 49, 4156.CrossRefGoogle Scholar
Henry, D.J., Novák, M., Hawthorne, EC, Ertl, A., Dutrow, B., Uher, P. and Pezzotta, E (2011) Nomenclature of the tourmaline supergroup minerals. American Mineralogist, 96, 895913.CrossRefGoogle Scholar
Herat, J.W. (1984) Geology and occurrence of gems in Sri Lanka. Journal of Natural Sciences Council of Sri Lanka, 12, 257271.Google Scholar
Holland, T.J.B. and Redfern, S.A.T (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Lussier, A.J., Ball, N.A., Hawthorne, EC, Henry, D.J., Shimizu, R., Ogasawara, Y and Ota, T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. American Mineralogist, 101, 355361.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV: the compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mendis, D.P.J., Rupasinghe, M.S. and Dissanayake, C.B. (1993) Application of structural geology in exploration for gem deposits of Sri Lanka. Bulletin of Geological Society of Finland, 65, 31–0.CrossRefGoogle Scholar
Munasinghe, T and Dissanayake, C.B. (1981) The origin of gemstones in Sri Lanka. Economic Geology, 76, 12161225.CrossRefGoogle Scholar
Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M. and Shimobayashi, N. (2014) Adachiite, a Si—poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 109, 7478.CrossRefGoogle Scholar
Novák, M., Povondra, P. and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxydravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal CrossRefGoogle Scholar
Novák, M., Škoda, R., Filip, J., Macek, I. and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Trebic Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. The Canadian Mineralogist, 49, 359380.CrossRefGoogle Scholar
Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P. and Škoda, R. (2013a) Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 18861892.CrossRefGoogle Scholar
Novák, M., Kadlec, T and Gadas, P. (2013b) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastejovice region. Journal of Geosciences, 58, 21–7.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, E (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l-75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.CrossRefGoogle Scholar
Prescher, C., McCammon, C. andDubrowinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329331.CrossRefGoogle Scholar
Reznitskii, L., Clark, C.M., Hawthorne, EC, Grice, J.D., Skogby, H., Hålenius, U. and Bosi, F. (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18) (BO3)3 (OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 17671773.CrossRefGoogle Scholar
Selway, J.B., Černý, P. and Hawthorne, EC (1998) Feruvite from lepidolite pegmatites at Red Cross Lake, Manitoba. The Canadian Mineralogist, 36, 433–39.Google Scholar
Selway, J.B., Novák, M., Černý, P. and Hawthorne, EC (2000) The Tanco pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. The Canadian Mineralogist, 38, 10951102.Google Scholar
Sheldrick, G.M. (2013) SHELXL2013. University of Göttingen, Germany.Google Scholar
Skogby, H., Bosi, E and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811816.CrossRefGoogle Scholar
Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524531.CrossRefGoogle Scholar
Supplementary material: File

Bosi et al. supplementary material

CIF

Download Bosi et al. supplementary material(File)
File 17.7 KB