Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:29:41.913Z Has data issue: false hasContentIssue false

Luboržákite, Mn2AsSbS5, a new member of pavonite homologous series from Vorontsovskoe gold deposit, Northern Urals, Russia

Published online by Cambridge University Press:  10 June 2020

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Emil Makovicky
Affiliation:
Department of Geoscience and Resource Management, University of Copenhagen, Østervoldgade 10, DK-1350, Copenhagen K, Denmark
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Sergey Y. Stepanov
Affiliation:
Department of Minerals Deposits Geology, St. Petersburg State University, University Embankment 7/9, 199034St Petersburg, Russia
Roman S. Palamarchuk
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Ural Branch of the Russian Academy of Sciences, territory of the Ilmeny State Reserve, Miass, Chelyabinsk District, 456317, Russia
*
*Author for correspondence: Anatoly V. Kasatkin, Email: [email protected]

Abstract

Luboržákite, ideally Mn2AsSbS5, is a new mineral from the Vorontsovskoe gold deposit, Northern Urals, Russia. It forms long-prismatic crystals up to 70 × 20 μm and anhedral grains of the same size embedded in the matrix of Mn-bearing dolomite and Mn-bearing calcite. Associated minerals include pyrite, orpiment, realgar, stibnite, aktashite, alabandite, boscardinite, chabournéite, coloradoite, clerite, écrinsite, gold, routhierite, sphalerite and twinnite. Luboržákite is black, opaque with metallic lustre and has a black streak. It is brittle and has an uneven fracture. No cleavage and parting have been observed. Mohs hardness is 4–4½. Dcalc = 4.181 g cm–3. In reflected light, luboržákite is tin-white, weakly anisotropic with rotation tints varying from dark grey to grey. The chemical composition of luboržákite is (wt.%; electron microprobe, WDS mode): Mn 21.23, Cu 0.29, Ag 0.56, Pb 1.90, As 15.25, Sb 27.03, S 33.23, total 99.49. The empirical formula based on the sum of all atoms = 9 apfu is Mn1.86Pb0.04Ag0.03Cu0.02As0.98Sb1.07S5.00. The new mineral is monoclinic, space group C2/m with a = 12.5077(6), b = 3.8034(2), c = 16.0517(8) Å, β = 94.190(4)°, V = 761.57(6) Å3 and Z = 4. The crystal structure of luboržákite was solved from the single-crystal X-ray diffraction data to R = 0.0383 for 712 observed reflections with I > 3σ(I). Luboržákite is a new member of the heterochemical isostructural series of ‘unit-cell twinned’ structures, named the pavonite series. The new mineral honours Lubor Žák, a prominent Czech crystallographer and the professor of the Charles University in Prague, Czech Republic.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Biagioni, C., Moëlo, Y., Favreau, G., Bourgoin, V. and Boulliard, J.-C. (2015) Crystal structure of Pb-rich chabournéite from Jas Roux, France. Acta Crystallographica, B71, 8188.Google Scholar
Ciobanu, C.L., Brugger, J., Cook, N.J., Mills, S.J., Elliott, P., Damian, G. and Damian, F. (2014) Graţianite, MnBi2S4, a new mineral from the Bǎiţa Bihor skarn, Romania. American Mineralogist, 99, 11631170.CrossRefGoogle Scholar
Fershtater, G.B. (2013) Paleozoic Intrusive Magmatism of the Middle and Southern Urals. Publishing house of RIO UB RAS, Ekaterinburg, Russia, 368 pp. [in Russian].Google Scholar
Kasatkin, A.V., Nestola, F., Agakhanov, A.A., Škoda, R., Karpenko, V.Y., Tsyganko, M.V. and Plášil, J. (2018 a) Vorontsovite, (Hg5Cu)Σ6TlAs4S12, and Ferrovorontsovite, (Fe5Cu)Σ6TlAs4S12: The Tl- and Tl-Fe-Analogues of Galkhaite from the Vorontsovskoe Gold Deposit, Northern Urals, Russia. Minerals, 8, 185.CrossRefGoogle Scholar
Kasatkin, A.V., Makovicky, E., Plášil, J., Škoda, R., Agakhanov, A.A., Karpenko, V.Y. and Nestola, F. (2018 b) Tsygankoite, Mn8Tl8Hg2(Sb21Pb2Tl)Σ24S48, a New Sulfosalt from the Vorontsovskoe Gold Deposit, Northern Urals, Russia. Minerals, 8, 218.CrossRefGoogle Scholar
Kasatkin, A.V., Makovicky, E., Plášil, J., Škoda, R., Chukanov, N.V., Stepanov, S.Y., Agakhanov, A.A. and Nestola, F. (2019) Gladkovskyite, MnTlAs3S6, a new thallium sulfosalt from the Vorontsovskoe gold deposit, Northern Urals, Russia. Journal of Geosciences, 64, 207218.CrossRefGoogle Scholar
Kasatkin, A.V., Plášil, J., Makovicky, E., Škoda, R., Agakhanov, A.A., Stepanov, S.Y. (2020) Luboržákite, IMA 2019-125; in: CNMNC Newsletter 54. Mineralogical Magazine, 84, 359365.Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Pp. 7125 in: Sulfide Mineralogy and Geochemistry (Vaughan, D.J., editor). Reviews in Mineralogy and Geochemistry, 61. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Makovicky, E. (2019) Algorithms for calculations of homologue order N in the homologous series of sulfosalts. European Journal of Mineralogy, 31, 8397.CrossRefGoogle Scholar
Makovicky, E., Mumme, W.G. and Watts, J.A. (1977) The crystal structure of synthetic pavonite, AgBi3S5, and the definition of the pavonite homologous series. The Canadian Mineralogist, 15, 339348.Google Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363376.CrossRefGoogle Scholar
Minina, O.V. (1994) The Auerbakh Complex ore-magmatic system of the Middle Ural. Native Geology, 7, 1723 [in Russian].Google Scholar
Mumme, W. G. and Žák, L. (1985) Paděraite, Cu5.59Ag1.3Pb1.6Bi11.2S22, a new mineral of the cuprobismutite-hodrušite group. Neues Jahrbuch für Mineralogie, Mitteilunghen, 12, 557567.Google Scholar
Murzin, V.V., Bushmakin, A.F., Sustavov, S.G. and Shcherbachov, D.K. (1996) Clerite MnSb2S4 – a new mineral from Vorontsovskoye gold deposit in the Urals. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 125, 3, 95101 [in Russian].Google Scholar
Murzin, V.V., Naumov, E.A., Azovskova, O.B., Varlamov, D.A., Rovnushkin, M.Yu. and Pirajno, F. (2017) The Vorontsovskoe Au-Hg-As ore deposit (Northern Urals, Russia): Geological setting, ore mineralogy, geochemistry, geochronology and genetic model. Ore Geology Reviews, 85, 271298.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system Jana2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Pfitzner, A. and Kurowski, D. (2000) A new modification of MnSb2S4 crystallizing in the HgBi2S4 structure type. Zeitschrift für Kristallographie, 215, 373376.Google Scholar
Rigaku (2019) CrysAlis CCD and CrysAlis RED. Rigaku-Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Sheldrick, G.M. (2015) SHELXT – integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Stepanov, S.Yu., Sharpenok, L.N. and Antonov, A.V. (2017) Fluid-Exposive breccias of the Vorontsovskoe Gold Deposit (The North Urals). Zapiski RMO, 1, 2943 [in Russian].Google Scholar
Vikentyev, I.V., Tyukova, E.E., Murzin, V.V., Vikent'eva, O.V. and Pavlov, L.G. (2016) Vorontsovsk Gold Deposit. Geology, Gold Modes, Genesis. Fort Dialog-Iset, Ekaterinburg, Russia, 204 p. [in Russian].Google Scholar
Žák, L. (1972) A contribution to the crystal chemistry of melanophlogite. American Mineralogist, 37, 779796.Google Scholar
Žák, L. and Povondra, P. (1981) Kutnohorite from the Chvaletice pyrite and manganese deposit, east Bohemia. Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 5563.CrossRefGoogle Scholar
Žák, L., Syneček, V. and Hybler, J. (1974) Krupkaite, CuPbBi3S6, a new mineral of the bismuthinite-aikinite group. Neues Jahrbuch für Mineralogie, Mitteilunghen, 12, 533541.Google Scholar
Žák, L., Frýda, J., Mumme, W. G. and Paar, W. H. (1994) Makovickyite, Ag1.5Bi5.5S9 , from Baite Bihorului, Romania: The 4P natural mineral member of the pavonite series. Neus Jahrbuch für Mineralogie, Abhandlungen, 168, 147169.Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material

Download Kasatkin et al. supplementary material(File)
File 337.2 KB