Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T06:29:49.977Z Has data issue: false hasContentIssue false

LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton, Bohemian Massif - implications for parental magma composition

Published online by Cambridge University Press:  05 July 2018

E. Słaby
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
R. Seltmann
Affiliation:
Natural History Museum, Department of Mineralogy, CERCAMS (Centre for Russian and Central EurAsian Mineral Studies), Cromwell Road, London SW7 5BD, UK
B. Kober
Affiliation:
Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany
A. Müller
Affiliation:
Natural History Museum, Department of Mineralogy, CERCAMS (Centre for Russian and Central EurAsian Mineral Studies), Cromwell Road, London SW7 5BD, UK Norges Geologiske Undersøkelse, N-7491 Trondheim, Norway
L. Galbarczyk-GąSiorowska
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
T. Jeffries
Affiliation:
Natural History Museum, Department of Mineralogy, CERCAMS (Centre for Russian and Central EurAsian Mineral Studies), Cromwell Road, London SW7 5BD, UK

Abstract

The elemental compositions of zoned alkali feldspar megacrysts from the Karkonosze pluton have been analysed and Pb isotope ratios determined using LA-ICP-MS, EMPA and TIMS. The results are used to interpret the magmatic environments within which they crystallized. Growth zones in the megacrysts show fluctuating trace element patterns that reflect a systematic relationship between incompatible LREE and compatible Ba. Chemical gradients between zones in the cores and rims of the megacrysts are not accompanied by significant variation in initial Pb isotope composition. The nucleation and crystallization of the megacrysts is interpreted as having occurred in an environment of magmatic hybridization caused by mixing of mantle and crustal components in which effective homogenization of the Pb isotope composition preceded the onset of megacryst growth. The concentrations of LREE in alkali feldspar zones were used to reconstruct hypothetical melt compositions. Some of the zones appear to have crystallized in an homogenous magmatic environment having clear geochemical affinities with end-member magmas in the Karkonosze pluton, whereas others crystallized in heterogeneous domains of magma hybridization. With the exception of Nd, zones crystallized in more homogeneous magma show LREE fractionation under near-equilibrium conditions. Trace element abundances of megacrysts grown in dynamic, homogeneous magmatic environments of the Karkonosze pluton occasionally deviate from the predicted patterns and show LREE impoverishment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonina, G.G. and Shmakin, B.M. (1970) Inhibition of lattice ordering of potassic feldspar by barium ions. Doklady Akademii Nauk SSSR, 195, 133–135.Google Scholar
Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.CrossRefGoogle Scholar
Barbarin, B. (1999) A review of the relationship between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605–626.CrossRefGoogle Scholar
Barbarin, B. and Didier, J. (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 145–153.Google Scholar
Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37, 521–552.CrossRefGoogle Scholar
Blundy, J. and Wood, B. (1991) Crystal-chemical control on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 193–209.CrossRefGoogle Scholar
Blundy, J. and Wood, B. (1994) Prediction of crystalmelt partitionc oefficients from elastic moduli. Nature, 372, 452–454.CrossRefGoogle Scholar
Borkowska, M. (1966) Petrography of Karkonosze granite. Geologia Sudetica, II, 7–119 (inPolish).Google Scholar
Cloos, H. (1925) Einführung in die tektonische Behand lung magmatischer Erscheinungen (Granittektonik). I Spez. Teil. Das Riesengebirge in Schlesien, Berlin, 1–194.Google Scholar
Cox, R.A., Dempster, T.J., Bell, B.R. and Rogers, G. (1996) Crystallization of the Shap granite: evidence from zoned K-feldspar megacrysts. Journal of the Geological Society, 153, 625–635.CrossRefGoogle Scholar
Diot, H., Mazur, S. and Pin, C. (1995) Karkonosze batholith (NE BohemianMassif): The evidence for pluton emplacement during transtensional-extensional collapse. Journal of Czech Geological Society, 40, 62.Google Scholar
Duthou, J.L., Couturie, J.P., Mierzejewski, M.P. and Pin, C. (1991) Rb/Sr age of the Karkonosze granite on the base of the whole rock method. Przegląd Geologiczny, 2, 75–79.(inPolish).Google Scholar
Ewart, A. and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element partitioning involcan ic rocks. Chemical Geology, 117, 251–284.CrossRefGoogle Scholar
Foley, S.F. (1992) Vein-plus-wall-rock melting mechanisms inthe lithosphere and the origin of potassic alkaline magmas. Lithos, 28, 435–453.CrossRefGoogle Scholar
Franke, W. and Żelaźniewicz, A. (2000) The eastern termination of the Variscides terrane correlation and kinematic evolution. Pp. 63–86 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (Franke, W., Haak, V., Oncken, O., Tanner, D., editors). Special Publication 179, Geological Society, London.Google Scholar
Franke, W., Żelaźniewicz, A., Porębski, S.J. and Wajsprych, B. (1993) Saxothuringian zone in Germany and Poland: differences and common features. Geologische Rundschau, 82, 583–99.Google Scholar
Fuhrman, M.L. and Lindslay, D.L. (1988) Ternaryfeldspar modeling and thermometry. American Mineralogist, 73, 201–215.Google Scholar
Gagnevin, D., Daly, J.S., Poli, G. and Morgan, D. (2005a) Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: insights into the petrogenesis of a granitic system and disequilibrium crystal growth. Journal of Petrology, 46, 1689–1724.CrossRefGoogle Scholar
Gagnevin, D., Daly, J.S., Waight, T., Morgan, D. and Poli, G. (2005b) Pb isotopic zoning of K-feldspar megacrysts determined by laser ablation multiplecollector ICP-MS: insights into granite petrogenesis. Geochimica et Cosmochimica Acta, 69, 1899–1915.CrossRefGoogle Scholar
Galer, S.J.G. and Abouchami, W. (1998) Practical applicationof lead spiking for correction of instrumental mass discrimination. 8th Goldschmidt Conference (Abstracts). Mineralogical Magazine, 62A, 491–492.CrossRefGoogle Scholar
Gerdes, A., Wörner, G. and Finger, F. (2000) Hybrids, magma mixing and enriched mantle melts in postcollisional Variscan granitoids: the Rastenberg Pluton, Austria. Pp. 415–431 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (Franke, W., Haak, V., Oncken, O., Tanner, D., editors). Special Publication 179, Geological Society, London.Google Scholar
Guo, J. and Green, T.H. (1989) Barium partitioning betweenalkali feldspar and silicate liquid at high temperature and pressure. Contributions to Mineralogy and Petrology, 102, 328–335.CrossRefGoogle Scholar
Hibbard, M.J. (1981) The magma mixing origin of mantled feldspar. Contributions to Mineralogy and Petrology, 76, 158–170.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1996) Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81, 719–734.CrossRefGoogle Scholar
Klominsky, J. (1969) Krkonossko-Jizersky granitoid massif. Sbornik Geologickich Ved, Geologie, 15, 7–132.(inCzech).Google Scholar
Kober, B. and Lippolt, H.J. (1985) Pre-Variscan mantle lead transfer to basement rocks as indicated by lead isotopes of the Schwarzwald crystalline, SWGermany. II: lead isotope evolution of the EuropeanHercyn ides. Contributions to Mineralogy and Petrology, 90, 172–178.CrossRefGoogle Scholar
Lameyre, J., Autran, A., Barriere, M., Bonin, B., Didier, J., Fluck, P., Fourcade, S., Giraud, P., Jonin, M., Orsini, J.B. and Vivier, G. (1980) Les granitodes de France. Pp. 51–97 in: Evolutions Geologiques de la France (Autran, A. and Dercourt, J., editors). Mémoires du Bureau de Recherches Géologiques et Minières, 107.Google Scholar
Long, P.E. (1978) Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid. Geochimica et Cosmochimica Acta, 42, 833–846.CrossRefGoogle Scholar
Long, P.E. and Luth, W.C. (1986) Origin of K-feldspar megacrysts ingran itic rocks: Implication of a partitioning model for barium. American Mineralogist, 71, 367–375.Google Scholar
Mahood, G.A. and Hildreth, W. (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 11–30.CrossRefGoogle Scholar
Mahood, G.A. and Stimac, J.A. (1990) Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54, 2257–2276.CrossRefGoogle Scholar
Marheine, D., Kachlik, V., Maluski, H., Patočka, F. and Żelaźniewicz, A. (2002) The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. Pp. 133–155 in: Palaezoic Amalgamation of Central Europe (Winchester, J.A., Pharaoh, T.C. and Verniers, J., editors). Special Publication 201, Geological Society, London.Google Scholar
Matte, P. (1991) Accretionary history and crustal evolutionof the VariscanBelt inWesternEurope. Tectonophysics, 196, 309–337.CrossRefGoogle Scholar
Matte, P., Maluski, H., Rajlich, P. and Franke, W. (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscanshe aring. Tectonophysics, 177, 151–170.CrossRefGoogle Scholar
Mazur, S. (1995) Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Ridge. Geologia Sudetica, 29, 31–98.Google Scholar
McIntire, W.L. (1963) Trace element partition coefficients: a review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27, 1209–1264.CrossRefGoogle Scholar
Mierzejewski, M.P. (2002) Additional data and remarks to Hans Cloos's work in Karkonosze Mts (Riesengebirge). Zeitschrift fur Geologischen Wissenschaften, 30, 37–48.Google Scholar
Morgan, G. and London, D. (2003) Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa. Contributions to Mineralogy and Petrology, 144, 722–738.CrossRefGoogle Scholar
Müller, A. and Seltmann, R. (2002) Plagioclase-mantled K-feldspar inthe Carboniferous porphyritic microgranite of Altenberg-Frauenstein, eastern Erzgebirge /Krusne Hory. Bulletin of the Geological Society of Finland, 74, 53–78.CrossRefGoogle Scholar
Mysen, B.O. and Virgo, D. (1980) Trace element partitioning and melt structure: an experimental study at 1 atm pressure. Geochimica et Cosmochimica Acta, 44, 1917–1930.CrossRefGoogle Scholar
Nagasawa, H. (1970) Rare Earth concentrations in zircon and apatite and their host dacite and granites. Earth and Planetary Science Letters, 9, 359–364.CrossRefGoogle Scholar
Narębski, W. (1994) Lower to Upper Paleozoic tectonomagmatic evolution of NE part of the BohemianMassif. Zentralblatt für Geologie und Paläontologie, 9/10, 961–972.Google Scholar
Nash, W.P. and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 2309–2322.CrossRefGoogle Scholar
Pagel, M. and Leterrier, J. (1980) The subalkaline potassic magmatism of the Ballons massif (Southern Vosges France). Shoshonitic affinity. Lithos, 13, 1–10.CrossRefGoogle Scholar
Patočka, F., Fajst, M. and Kachlik, V. (2000) Maficfelsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE BohemianMassif): the South Krkonosˇe complex. Zeitschrift für Geologische Wissenschaften., 28, 177–210.Google Scholar
Perini, G., Tepley III, F.J., Davidson, J.P. and Conticelli, S. (2003) The originof K-feldspar megacrysts hosted in alkaline potassic rocks from central Italy: a track for low-pressure processes inmafic magmas. Lithos, 66, 223–240.CrossRefGoogle Scholar
Perugini, D., Poli, G. and Gatta, G.D. (2002) Analysis and simulation of magma mixing processes in 3D. Lithos, 65, 313–330.CrossRefGoogle Scholar
Perugini, D., Poli, G. and Mazzuoli, R. (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows: Journal of Volcanology and Geothermal Research, 124, 255–279.CrossRefGoogle Scholar
Perugini, D., Poli, G. and Valentini, L. (2005) Strange attractors inplagio clase oscillatory zoning: petrological implications. Contributions to Mineralogy and Petrology, 149, 482–497.CrossRefGoogle Scholar
Pin, C. and Santos Zalduegui, J.F. (1997) Sequential separation of light-rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Applicationto isotopic analyses of silicate rocks. Analytica Chimica Acta, 339, 79–89.CrossRefGoogle Scholar
Piwinskii, A.J. and Wyllie, P.J. (1970) Experimental studies of igneous rock series: felsic body suite from the Needle Point pluton, Wallowa batholith, Oregon. Journal of Geology, 78, 55–76.CrossRefGoogle Scholar
Reid, M.R. (1990) Ionprobe investigation on rare earth elements distribution and partial melting of metasedimentary granulites. Pp. 506–522 in: Granulites and Crustal Evolution (Vielzeuf, D. and Vidal, P., editors). Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Ren, M., (2004) Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma. American Mineralogist, 89, 1290–1303.Google Scholar
Schnetzler, C.C. and Philpotts, J.A. (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II. Geochimica et Cosmochimica Acta, 34, 331–340.CrossRefGoogle Scholar
Schuler, C. and Steiger, R.H. (1978) On the genesis of feldspar megacrysts ingran ites: A Rb-Sr study. USGS Open File Report, 78–701, 386–387.Google Scholar
Siebel, W., Reitter, E., Wenzel, T. and Blaha, U. (2005) Sr isotope systematics of K-feldspars inpluton ic rocks revealed by the Rb-Sr microdrilling technique. Chemical Geology, 222, 183–199.CrossRefGoogle Scholar
Słaby, E. and Galbarczyk-Gąsiorowska, L. (2002) Barium inal kali feldspar megacrysts from Szklarska Poręba Huta porphyritic granite – possible indicator of magma mixing. Polish Mineralogical Society Special Papers, 20, 198–201.Google Scholar
Słaby, E. and Götze, J. (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling – a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine, 68, 561–577.CrossRefGoogle Scholar
Słaby, E. and Martin, H. (2005) Mechanisms of differentiation of the Karkonosze granite. Polish Mineralogical Society Special Papers, 26, 264–267.Google Scholar
Słaby, E. and Martin, H. (2007) Mafic and felsic magma interactions in granites: the Karkonosze Hercynian pluton( Sudetes, BohemianMassif). Journal of Petrology (submitted).Google Scholar
Słaby, E., Galbarczyk-Gąsiorowska, L. and Baszkiewicz, A. (2002) Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland ). Acta Geologica Polonica, 52, 501–519.Google Scholar
Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R. and Mûller, A. (2007) Alkali feldspar megacryst growth: geochemical modelling. Mineralogy and Petrology, 89, 1–29.CrossRefGoogle Scholar
Stix, J. and Gordon, M.P. (1990) Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: Effects of composition, temperatures, and volatiles. Geochimica et Cosmochimica Acta, 54, 2697–2708.CrossRefGoogle Scholar
Tilley, R.J.D. (1987) Defect Crystal Chemistry. Blackie, London.Google Scholar
Troll, V.R. and Schmincke, H.U. (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A', Gran Canaria, Canary Islands. Journal of Petrology, 43, 243–270.CrossRefGoogle Scholar
Vernon, R.H. (1986) K-feldspar megacrysts in granites – phenocrysts, not porphyroblasts. Earth Science Review, 23, 1–63.CrossRefGoogle Scholar
Viswanathan, K. and Kielhorn, H.-M. (1983) Al,Si distributionina ternary (Ba,K,Na)-feldspar as determined by crystal structure refinement. American Mineralogist, 68, 122–124.Google Scholar
Watson, E.B. and Harrison, M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.CrossRefGoogle Scholar
Weiss, D., Kober, B., Dolgopolova, A., Mason, T., Coles, B.J., Gallagher, K., LeRoux, G. and Spiro, B. (2004) Accurate and precise Pb isotope ratio measurements in environmental samples by MCICP- MS. International Journal of Mass Spectrometry, 232, 205–215.CrossRefGoogle Scholar
White, J.C., Holt, G.S., Parker, D.F., Ren, M. (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: Systematics of trace element partitioning. American Mineralogist, 88, 316–329.Google Scholar
Wilamowski, A. (1998) Geotectonic environment of the Karkonosze and Tatra granite intrusions based on geochemical data. Archiwum Mineralogiczne, LI, 261–271 (inPolish).Google Scholar
Wörner, G., Wegner, W., Kiebala, A., Singer, B.S., Heumann, A., Kronz, A. and Hora, J. (2004) Evolution of Taapaca volcano, N. Chile, evidence from major and trace element, Sr-, Nd-, Pb-, and Useries isotopes, age dating and chemical zoning in sanidine megacrysts. IAVCEI General Assembly, Volcanism and its impact on society, 15–19 November, Pucon, Chile.Google Scholar
Zellmer, G.F. and Clavero, J.E. (2006) Using trace element correlation patterns to decipher a sanidine crystal growth chronology: An example from Taapaca volcano, Central Andes. Journal of Volcanology and Geothermal Research, 156, 291–301.Google Scholar
Supplementary material: File

Słaby et al. supplementary material

Table of supplementary data

Download Słaby et al. supplementary material(File)
File 45.1 KB