Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T14:51:50.317Z Has data issue: false hasContentIssue false

Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt

Published online by Cambridge University Press:  05 July 2018

T. Geisler*
Affiliation:
Institut ftir Mineralogie, Universitiit Miinster, Corrensstr. 24, D - 48149 Miinster, Germany
A. A. Rashwan
Affiliation:
Faculty of Science – Banha, Geological Department, Zigazig University, Banha, Egypt
M. K. W. Rahn
Affiliation:
HSK, 5232 Villigen - HSK, Switzerland
U. Poller
Affiliation:
Max-Planck – Institut ftir Chemie, Abt. Geochemie, Postfach 3060, D-55020 Mainz, Germany
H. Zwingmann
Affiliation:
School of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA, Australia
R. T. Pidgeon
Affiliation:
School of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA, Australia
H. Schleicher
Affiliation:
Mineralogisch-Petrographisches Institut, Universitat Hamburg, Grindelallee 48, D - 20146 Hamburg, Germany
F. Tomaschek
Affiliation:
Institut ftir Mineralogie, Universitiit Miinster, Corrensstr. 24, D - 48149 Miinster, Germany
*

Abstract

The chemical and structural alteration of metamict zircon crystals from a 619 ±17 (2σ) Ma old, posttectonic granite in the southern part of the Eastern Desert, Egypt was studied. The crystals show simple oscillatory growth zones with metamictization–induced fractures, which provided pathways for fluid infiltration. Electron and ion microprobe analyses reveal that metamict, i.e. U and Th–rich, areas are heavily enriched in Ca, Al, Fe, Mn, LREE, and a water species, and have lost Zr and Si as well as radiogenic Pb. These chemical changes are the result of an intensive reaction with a low–temperature (120—200°C) aqueous solution. The chemical reactions probably occurred within the amorphous regions of the metamict network. During the zircon–fluid interactions the metamict structure was partially recovered, as demonstrated by micro-Raman and -infrared measurements. A threshold degree of metamictization, as defined empirically by an α–decay dose, Dc, was necessary for zircons to undergo hydrothermal alteration. It is proposed that Dc marks the first percolation point, where the amorphous domains start to form percolating clusters in the metamict network and where bulk chemical diffusion is believed to increase dramatically. The time of the hydrothermal alteration is determined by a lower intercept age of a U-Pb SHRIMP discordia of 17.9 (2σ) Ma, which is in good agreement with an apatite fission track age of 22.2 (2σ) Ma. The hydrothermal alteration event occurred contemporaneously with the main rifting phase of the Red Sea and widespread low- temperature mineralizations along the Red Sea coast.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd El Rahman, A.M. (1995) Tectonic-magmatic stages of shield evolution, the Pan-African belt in Northeastern Egypt. Tectonophysics, 242, 223240.CrossRefGoogle Scholar
Abd El Rahman, A.M. and Doig, R. (1987) The Rb-Sr geochronological evolution of the Ras Garib segment of the Northern Nubian Shield. Journal of the Geological Society of London, 144, 577586.CrossRefGoogle Scholar
Akhtar, M.J. and Waseem, S. (2001) Atomistic simulation studies of zircon. Chemical Physics, 274, 109120.CrossRefGoogle Scholar
Balan, E., Neuville, D.R., Trocellier, P., Fritsch, E., Muller, J.-P. and Calas, G. (2001) Metamictization and chemical durability of detrital zircon. American Mineralogist, 86, 10251033.CrossRefGoogle Scholar
Bessette, D. (2000) Analyse und Quantifizierung geologischer Proben mit der Synchroton-Rontgenfluoreszenz. Unpublished PhD thesis, University of Hamburg.Google Scholar
Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. and Winkler, R. (1975) Methode de datation potassium-argon. Appareillage et Technique. Strasbourg, 53 pp.Google Scholar
Bojar, A.-V., Fritz, H., Kargl, S. and Unzog, W. (2002) Phanerozoic tectonothermal history of the Arabian- Nubian shield in the Eastern Desert of Egypt: evidence from fission track and paleostress data. Journal of African Earth Sciences, 34, 191202.CrossRefGoogle Scholar
Brandon, M. (2001) ZetaAge program (Vers. 4.8). http://www.geology.yale.edu/~brandon/SoftwareGoogle Scholar
Bunker, B. C. (1994) Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids, 179, 300308.CrossRefGoogle Scholar
Cathles, L.M., Erendi, A.H.J. and Barrie, T. (1997) How long can a hydrothermal system be sustained by a single intrusive event? Economic Geology, 92, 766—722.CrossRefGoogle Scholar
Chakoumakos, B.C., Murakami, T., Lumpkin, G.R. and Ewing, R.C. (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science, 236, 15561559.CrossRefGoogle ScholarPubMed
Claoué-Long, J.C., Compston, W., Roberts, J. and Fanning, C. M. (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analyses: geochronology, time scales and global stratigraphic correlation. Society of Sedimentary Geology, Special Publication, 54, 321.Google Scholar
Compston, W., Williams, I.S. and Meyer, C. (1984) U- Pb geochronolgy of zircons from the lunar breccia 73217 using a sensitive high-resolution ion microprobe. Proceedings XIV Lunar Planetary Science Conference. Journal of Geophysical Research, B89, 525534.CrossRefGoogle Scholar
Cooper, J.A., Stacey, J.S., Stoeser, D.G. and Fleck, R.J. (1979) An evaluation of the zircon method of isotopic dating in the southern Arabian craton. Contributions to Mineralogy and Petrology, 68, 429439.CrossRefGoogle Scholar
Davis, K.M. and Tomozawa M. (1995) Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity. Journal ofNon-Crystalline Solids, 185, 203220.CrossRefGoogle Scholar
DeLaeter, J.R. and Kennedy, A.K. (1998) A double focussing mass spectrometer for geochronology. International Journal of Mass Spectrometry and Ion Processes, 178, 4350.CrossRefGoogle Scholar
Dowty, E. (1980) Crystal-chemical factors affecting the mobility of ions in minerals. American Mineralogist, 65, 174182.Google Scholar
El Gaby, S., List, F.K. and Tehrani, N. (1990) The basement complex of the Eastern Desert and Sinai. Pp. 175184 in: Geology of Egypt (Said, R. editor). Balkema, Rotterdam, The Netherlands.Google Scholar
El Ramly, M.F. (1972) A new geological map for the basement rocks in the Eastern and Southwestern deserts of Egypt. Annals of the Geological Survey of Egypt, 2, 118.Google Scholar
Ewing, R.C. (1999) Nuclear waste forms for actinides. Proceedings of the National Academy of Science, USA, 96, 34323439.CrossRefGoogle ScholarPubMed
Ewing, R.C., Haaker, R.F. and Lutze, W. (1982) Leachability as a function of alpha dose. Pp. 389397 in: Scientific Basis for Nuclear Waste Management V (Lutze, W. editor). North-Holland, New York.Google Scholar
Ewing, R.C., Lutze, W. and Weber, W.J. (1995) Zircon: A host phase for the disposal of weapons plutonium. Journal of Materials Research, 10, 243246.CrossRefGoogle Scholar
Farnan, I. and Salje, E.K.H. (2001) The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance. Journal of Applied Physics, 89, 20842090.CrossRefGoogle Scholar
Geisler, T. (2002) Isothermal annealing of partially metamict zircon: evidence for a three stage recovery process. Physics and Chemistry of Minerals, 29, 420429.CrossRefGoogle Scholar
Geisler, T. and Pidgeon, R.T. (2001) Significance of radiation damage on the integral SEM cathodolumi- nescence intensity of zircon: an experimental study. Neues Jahrbuch für Mineralogie-Monatshefte, 433445.Google Scholar
Geisler, T. and Pidgeon, R.T. (2002) Raman scattering from metamict zircon : Comments on "Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage" by Nasdala et al. (2001) Contributions to Mineralogy and Petrology, 141, 125144. Contributions to Mineralogy and Petrology, 143, 750755.Google Scholar
Geisler, T. and Schleicher, H. (2000) Improved U-Th- total Pb dating of zircons by electron microprobe using a new background modeling method and Ca as a chemical indicator of fluid-induced U-Th-Pb discordance in zircon. Chemical Geology, 163, 269285.CrossRefGoogle Scholar
Geisler, T., Pidgeon, R.T., van Bronswijk, W. and Pleysier, R. (2001a) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. European Journal of Mineralogy, 13, 11631176.CrossRefGoogle Scholar
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T. and van Bronswijk, W. (2001b) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contributions to Mineralogy and Petrology, 141, 5365.CrossRefGoogle Scholar
Geisler, T., Pidgeon, R.T., van Bronswijk, W. and Kurtz, R. (2002) Transport of uranium, thorium, and lead in metamict zircon under low temperature hydrothermal conditions. Chemical Geology, 191, 141154.CrossRefGoogle Scholar
Geisler, T., Pidgeon, R.T., Kurtz, R., van Bronswijk, W. and Schleicher, H. (2003a) Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist (in press).CrossRefGoogle Scholar
Geisler, T., Zhang, M. and Salje, E.K.H. (2003b) Recrystallization of almost amorphous zircon under hydrothermal conditions: An infrared spectroscopic study. Journal of Nuclear Materials (in press) http://www.sciencedirect.com/science/journal/00223115CrossRefGoogle Scholar
Gindy, A.R. (1961) Radioactivity and Tertiary volcanic activity in Egypt. Economic Geology, 56, 557568.CrossRefGoogle Scholar
Greiling, R.O., Abdeen, M.M., Dardir, A.A., El Akhal, H., El Ramly, M.F., Kamal El Din, G.M., Osman, A.F., Rashwan, A.A., Rice, A.H.N. and Sadek, M.F. (1994) A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geologische Rundschau, 83, 484501.CrossRefGoogle Scholar
Harrison, T.M. and McDougall, I. (1980) Investigations of an intrusive contact, North-west Nelson, New Zealand -Thermal I. chronological and isotopic constraints. Geochimica et Cosmochimica Acta, 44, 19852030.CrossRefGoogle Scholar
Hashad, A.H. (1980) Present status of geochronological data on the Egyptian basement complex. Pp. 3146 in: Evolution and Mineralization of the Arabian- Nubian Shield (Al Shanti, A.M.S., editor). Applied Geology of Jeddah Bulletin, 3.Google Scholar
Hassan, M.A. and Hashad, A.H. (1990) Precambrian of Egypt. Pp. 201-245 in: Geology of Egypt (Said, R. editor). Balkema, Rotterdam, The Netherlands.Google Scholar
Hogdahl, K., Gromet, L.P. and Broman, C. (2001) Low P-T Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden. American Mineralogist, 86, 534546.Google Scholar
Holland, H.D. and Gottfried, D. (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallographica, 8, 291300.CrossRefGoogle Scholar
Hoskin, P.W.O. and Ireland, T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627630.2.0.CO;2>CrossRefGoogle Scholar
Hoskin, P.W.O., Kinny, P.D. and Wyborn, D. (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. Pp. 545548 in: Water-rock Interaction (Arehart, G.B. and Hulston, J.R., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Hoskin, P.W.O., Kinny, P.D., Wyborn, D. and Chappell, B.W. (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. Journal of Petrology, 41, 13651396.CrossRefGoogle Scholar
Hussein, A.A. and Sharkawi, El (1990) Mineral deposits. Pp. 511558 in: Geology of Egypt (Said, R. editor). Balkema Rotterdam, The Netherlands.Google Scholar
Hussein, A.A., Ali, M.M. and El Ramly, M.F. (1982) A proposed new classification of the granites of Egypt. Journal of Volcanology and Geothermal Research, 14, 187198.CrossRefGoogle Scholar
Köppel, V. and Sommerauer, J. (1974) Trace elements and the behaviour of the U-Pb system in inherited and newly formed zircons. Contributions to Mineralogy and Petrology, 43, 7182.CrossRefGoogle Scholar
Kohn, B.P., Eyal, M. and Feuerstein, S. (1992) A major Late Devonian-Early Carboniferous (Hercynian) thermotectonic event at the NW margin of the Arabian-Nubian shield: evidence from zircon fission track dating. Tectonics, 11/5, 10181027.CrossRefGoogle Scholar
Koschek, G. (1993) Origin and significance of SEM cathodoluminescence from zircon. Journal of Microscopy, 171, 223232.CrossRefGoogle Scholar
Krogh, T.E. and Davis, G.L. (1975) Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Institute of Washington, Yearbook, 74, 619623.Google Scholar
Kröner, A., Krüger, J. and Rashwan, A.A. (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert and Southwest Sinai. Geologisches Rundschau, 83, 502513.CrossRefGoogle Scholar
Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547569.CrossRefGoogle Scholar
Larson, S.Å. and Tullborg, E.-L. (1998) Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb concordia. Geology, 26, 919922.2.3.CO;2>CrossRefGoogle Scholar
Laslett, G.M., Green, P., Duddy, I.R. and Gleadow, A.J.W. (1987) Thermal annealing of fission tracks in apatite: 2. A quantitative analysis. Chemical Geology, 65, 113.CrossRefGoogle Scholar
Lee, J.K.W. and Tromp, J. (1995) Self-induced fracture generation in zircon. Journal of Geophysical Research, B100, 17753—17750.CrossRefGoogle Scholar
Ludwig, K.R. (1999) Isoplot-A Geochronological Toolkit for Microsoft Excel (Version 2.0).Google Scholar
Mathieu, R., Zetterstrom, K., Cuney, M., Gauthier-Lafaye, F. and Hidaka, H. (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombe natural nuclear reaction zones (Franceville basin, Gabon). Chemical Geology, 171, 147171.CrossRefGoogle Scholar
McDougall, I. and Roksandic, Z. (1974) Total fusion 40Ar/39Ar ages using Hifar Reactor. Journal of the Geological Society of Australia, 21, 8189.CrossRefGoogle Scholar
Medenbach, O. (1976) Geochemie der Elemente in Zirkon und ihre räumliche Verteilung–Eine Untersuchung mit der Elektronenstrahlmikrosonde. PhD thesis, Ruprecht-Karl-Universität, Heidelberg, Germany.Google Scholar
Meneisy, M.Y. (1990) Volcanicity. Pp. 157172 in: Geology of Egypt (Said, R. editor). Balkema Rotterdam, The Netherlands.Google Scholar
Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumkin, G.R. and Weber, R.W.J. (1991) Alpha- decay event damage in zircon. American Mineralogist, 76, 15101532.Google Scholar
Nasdala, L., Irmer, G. and Wolf, D. (1995) The degree of metamictization in zircon: a Raman spectroscopic study. European Journal of Mineralogy, 7, 471478.CrossRefGoogle Scholar
Nasdala, L., Götze, J., Pidgeon, R.T., Kempe, U. and Seifert, T. (1998) Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxionian Rotliegende rhyolites. Contributions to Mineralogy and Petrology, 132, 300306.CrossRefGoogle Scholar
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T. and Kober, B. (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141, 125144.CrossRefGoogle Scholar
Nasdala, L., Irmer, G. and Jonckheere, R. (2002a) Radiation damage ages: Practical concept or impractical vision? Reply to two comments on ‘Metamictisation of natural zircon: Accumulation versus thermal annealing". Contributions to Mineralogy and Petrology, 143, 758765.CrossRefGoogle Scholar
Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K. and Seydoux- Guillaume, A.-M (2002b) Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology, 191, 121140.CrossRefGoogle Scholar
Omar, G.I. and Steckler, M.S. (1995) Fission track evidence on the initial rifting of the Red Sea: two pulses, no propagation. Science, 270, 13411344.CrossRefGoogle Scholar
Pidgeon, R.T., Furfaro, D., Kennedy, A.K., Nemchin, A.A. and van Bronswijk, W. (1994) Calibration of zircon standards for the Curtin SHRIMP II. 8th International Conference on Geochronology, Cosmochronology and Isotope Geology. US Geological Survey Circular, 1107, 251.Google Scholar
Pidgeon, R.T., Nasdala, L. and Todt, W. (1998) Determination of radiation damage ages on parts of zircon grains by Raman microprobe: implications for annealing history and U-Pb stability. Mineralogical Magazine, 62A, 11741175.CrossRefGoogle Scholar
Pupin, J.-P. (1980) Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207220.CrossRefGoogle Scholar
Rios, S., Salje, E.K.H., Zhang, M. and Ewing, R.C. (2000) Amorphization in zircon: evidence for direct impact damage. Journal of Physics C, 12, 24012412.Google Scholar
Rizvanova, N.G., Levchenkov, O.A., Belous, A.E., Bezmen, N.I., Maslenikov, A.N., Komarov, A.N., Makeev, A.F. and Levskii, L.K. (2000) Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contributions to Mineralogy and Petrology, 139, 101114.CrossRefGoogle Scholar
Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184, 123—13.CrossRefGoogle Scholar
Said, R. (1962) The Geology of Egypt. Elsevier Publishing Company, Amsterdam, New York.Google Scholar
Saleeb Roufaiel, G.S. and Samuel, M.D. (1975) Iron- lead-zinc sulphide mineralization and related native sulphur in Miocene sediments at Ranga, Red Sea coast, Egypt. Neues Jahrbuch für Geologie und Palaontologie, Monatshefte, 11, 682692.Google Scholar
Salje, E.K.H., Chrosch, J. and Ewing, R.C. (1999) Is ‘metamictization’ of zircon a phase transition? American Mineralogist, 84, 11071116.CrossRefGoogle Scholar
Sinha, A.K., Wayne, D.M. and Hewitt, D.A. (1992) The hydrothermal stability of zircon: Preliminary experimental and isotopic studies. Geochimica et Cosmochimica Acta, 56, 35513560.CrossRefGoogle Scholar
Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 359362.CrossRefGoogle Scholar
Stein, H.J. and Cathles, L.M. (1997) Preface–A special issue on the timing and duration of hydrothermal events. Economic Geology, 92, 763766.CrossRefGoogle Scholar
Stern, R.J. and Hedge, C.E. (1985) Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. American Journal of Science, 285, 97127.CrossRefGoogle Scholar
Stern, T.W., Goldich, S.S and Newell, M.F. (1966) Effects of weathering on the U/Pb ages of zircons from the Morton Gneiss, Minnesota. Earth and Planetary Science Letters, 1, 369371.CrossRefGoogle Scholar
Thomas, J.B., Bodnar, R.J., Shimizu, N. and Sinha A.K. (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta, 66, 28872901.CrossRefGoogle Scholar
Trachenko, K., Dove, M.T. and Salje, E.K.H. (2001) Atomistic modeling of radiation damage in zircon. Journal of Physics of Condensed Matter, 13, 19471959.CrossRefGoogle Scholar
Trachenko, K., Dove, M.T. and Salje, E.K.H. (2002) Structural changes in zircon under α-decay irradiation. Physics Review B, 65, 180102 (R).Google Scholar
Trachenko, K., Dove, M.T. and Salje, E.K.H. (2003) Large swelling and percolation in irradiated zircon. Journal of Physics C,, 15, L1L7.Google Scholar
Wayne, D.M., Sinha, A.K. and Hewitt, D.A. (1992) Differential response of zircon U-Pb isotopic systematics to metamorphism across a lithologic boundary; an example from the Hope Valley shear zone, southeastern M assachusetts, USA. Contributions to Mineralogy and Petrology, 109, 408420.CrossRefGoogle Scholar
Williams, I.S. (1992) Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Transactions of the Royal Society of Edinburgh: Earth Science, 83, 447458.CrossRefGoogle Scholar
Zhang, M. and Salje, E.K.H. (2001) Infrared spectro-scopic analysis of zircon: Radiation damage and the metamict state. Journal of Physics of Condensed Matter, 13, 30573071.CrossRefGoogle Scholar
Zhang, M., Salje, E.K.H., Farnan, I., Capitani, G.C., Leroux, H., Clark, A.M., Schluter, J. and Ewing, R.C. (2000a) Annealing of α-decay damage in zircon: a Raman spectroscopic study. Journal of Physics C, 12, 31313148.Google Scholar
Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M. and Leroux, H. (2000b) Metamictization of zircon: Raman spectroscopic study. Journal of Physics of Condensed Matter, 12, 19151925.CrossRefGoogle Scholar
Zinner, E.K. and Crozaz, G. (1986) A method for the quantitative measurement of rare earth elements in the ion microprobe. International Journal of Mass Spectrometry and Ion Processes, 69, 1738.CrossRefGoogle Scholar