Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:05:09.121Z Has data issue: false hasContentIssue false

Low-grade metamorphism and accretion tectonics: Southern Uplands terrain, Scotland

Published online by Cambridge University Press:  05 July 2018

A. E. S. Kemp
Affiliation:
Grant Institute of Geology, University of Edinburgh, Edinburgh, Scotland
G. H. J. Oliver
Affiliation:
Department of Geology, University of St Andrews, St Andrews, Fife, Scotland
J. R. Baldwin
Affiliation:
Department of Geology, University of St Andrews, St Andrews, Fife, Scotland

Abstract

Previous studies of low-grade metamorphism in the Southern Uplands accretionary terrain indicated prehnite-pumpellyite facies/anchizone conditions developed throughout the area, except for local preservation of trench-slope sediments and an accreted seamount at zeolite facies/advanced diagenetic grade. New graptolite reflectance data are presented that show a general northward increase in temperature in the Southern Uplands. The results from two cross-strike traverses in the southern and central belts in contemporaneous sequences, using illite crystallinity, illite lateral spacing (bo) , and graptolite reflectance, indicate the development of systematic accretion-related low-grade metamorphism. Well-developed and constant anchizone conditions occur throughout the NE (Langholm) traverse, associated with common, F1 accretion-related folding and a regionally penetrative S1 cleavage. In the SW (Kirkcudbright) traverse, however, the youngest, last accreted packets are preserved at a transitional diagenetic stage and lack a penetrative S1 cleavage. Illite crystallinity, graptolite reflectance, and bo increase systematically northward through earlier accreted packets, reaching values of the NE traverse only at the northern end. The concomitant increase of bo with illite crystallinity suggests the relatively high P-low T trajectory characteristic of subduction zones. Integration of metamorphic and structural data relates increasing intensity of aceretion-related F1 folding, developmertt of S1 fabric, and onset of later fold phases to grade of metamorphism and structural level within the accretionary pile.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. B., and Cameron, T. D. J. (1979) In The Caledonides of the British Isles—reviewed. (Harris, A. L., Holland, C. H., and Leake, B. E., eds.). Geol. Soc. Lond. Spec. Publ. 8, 263-7.Google Scholar
Bergstrom, S. M. (1980) Geol. För. Stockh. Förh. 102, 377-92.CrossRefGoogle Scholar
British Standards Institution (1981) Petrographic analysis of bituminous coal and anthracite. Part 5. Method of determining microscopically the reflectance of vitrinite. BS 6127, 1-7.Google Scholar
Cameron, T. D. J. (1981) J. Earth Sci. R. Dublin Soc. 3, 5374.Google Scholar
Chandra, D. (1965) Econ. Geol. 60, 621-30.CrossRefGoogle Scholar
Craig, G. Y. (1983) The Geology of Scotland. 2nd edn. Scottish Academic Press, Edinburgh.Google Scholar
Hepworth, B. C. (1981) Unpubl. Ph.D. thesis, University of St Andrews.Google Scholar
Hepworth, B. C., Oliver, G. J. H., and McMurtry, M. J. (1982) In Trench Fore Arc Geology (Leggett, J. K., ed.). Spec. Pub. Geol. Soc. Lond. 10, 521-34.Google Scholar
Kemp, A. E. S., and White, D. E. Geol. Mag. (in press).Google Scholar
Kisch, H. J. (1974) Proc. K. Ned. Akad. Wet, Amsterdam, B, 77, 81118.Google Scholar
Kisch, H. J. (1983) In Diagenesis in Sediments and Sedimentary Rocks, 2 (Larsen, G. and Chilingar, G. V., eds.). Elsevier, Amsterdam, 289493.Google Scholar
Kisch, H. J. and Padan, A. (1981) Terra Cognita 1, 54-5.Google Scholar
Leggett, J. K., McKerrow, W. S., and Eales, M. H. (1979) J. Geol. Soc. Lond. 136, 755-70.CrossRefGoogle Scholar
Leggett, J. K. and Soper, N. J. (1983) Tectonics 2, 187218.CrossRefGoogle Scholar
Maxwell, D. T., and Hower, J. (1967) Am. Mineral. 52, 843-57.Google Scholar
Oliver, G. J. H. (1978) Nature, 274, 242-43.CrossRefGoogle Scholar
Oliver, G. J. H. and Leggett, J. K. (1980) Trans. R. Soc. Edinburgh, Earth Sci. 71, 235-46.CrossRefGoogle Scholar
Oliver, G. J. H., Smellie, J. L., Thomas, L. J., Casey, D. M., Kemp, A., Evans, L. J., Baldwin, J. R., and Hepworth, B. C. (1984) Ibid. 75, 245-58.Google Scholar
Paproth, E., and Wolf, M. (1973) Geol. Pataeontol. 8, 469-93.Google Scholar
Phillips, W. E. A., Flegg, A. M., and Anderson, T. B. (1979) In The Caledonides of the British Isles—reviewed (Harris, A. L., Holland, C. H., and Leake, B. E., eds.). Geol. Soc. Lond. Spec. Publ. 8, 257-62.Google Scholar
Sassi, F. P., and Scolari, A. (1974) Contrib. Mineral. Petrol. 45, 143-52.CrossRefGoogle Scholar
Stringer, P. and Treagus, J. E. (1980) J. Struct. Geol. 2, 317-31.CrossRefGoogle Scholar
Stringer, P. and Treagus, J. E. (1981) Scot. J. Geol. 17, 129-48.CrossRefGoogle Scholar
Velde, B. (1965) Am. J. Sci. 263, 886913.CrossRefGoogle Scholar
Velde, B. (1967) Contrib. Mineral. Petrol. 14, 250-8.CrossRefGoogle Scholar
von Huene, R., and Lee, H. (1983) Mere. Am. Assoc. Petrol. Geol. 34, 781-92.Google Scholar
Walton, E. K. (1965) In The Geology of Scotland (Craig, G. Y., ed.). Oliver and Boyd, Edinburgh, 161227.Google Scholar
Watson, S. W. (1976) Unpubl. Ph.D. thesis, Univ. St Andrews.Google Scholar
Weber, K. (1972a) Neues Jahrb. Mineral. Monatsh. 267-76.Google Scholar
Weber, K. (1972b) Neues Jahrb. Geol. Palaeontol. Abh. 141, 333-63.Google Scholar