Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T16:33:38.719Z Has data issue: false hasContentIssue false

Levantite, KCa3(Al2Si3)O11(PO4), a new latiumite-group mineral from the pyrometamorphic rocks of the Hatrurim Basin, Negev Desert, Israel

Published online by Cambridge University Press:  14 June 2019

Evgeny V. Galuskin*
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Biljana Krüger
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Irina O. Galuskina
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Hannes Krüger
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
Anuschka Pauluhn
Affiliation:
Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
Vincent Olieric
Affiliation:
Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
*
*Author for correspondence: Evgeny V.Galuskin, Email: [email protected]

Abstract

Levantite, with the end-member formula KCa3(Al2Si3)O11(PO4), is the phosphate analogue of latiumite, KCa3(Al3Si2)O11(SO4, CO3) found in gehlenite–wollastonite hornfels on Har Parsa, Negev Desert, Israel. Levantite forms later zones on long-prismatic crystals of latiumite. Rarer homogeneous colourless levantite crystals up to 0.2 mm long and with mean composition (K0.94Ba0.01Na0.010.04)Σ1.00(Ca2.96Mg0.03)Σ2.99{(Si2.69Al2.06Fe3+0.16P0.06)Σ4.97O11}[(PO4)0.65(SO4)0.35]Σ1.00 were noted. Minerals of the levantite–latiumite series are associated with gehlenite, wollastonite, clinopyroxene of the esseneite–diopside series, anorthite and Ti-bearing andradite. Levantite crystalises in space group P21 with unit-cell parameters a = 12.1006(9) Å, b = 5.1103(4) Å, c = 10.8252(9) Å, β = 107.237(8)°, V = 639.34(9) Å3 and Z = 2. The structure of levantite is analogous to latiumite. It is formed by tetrahedral hybrid zweier double layers [(Si,Al)10O22] connected by Ca atoms. Three Ca atoms linked to different double layers are bridged over by (PO4) and minor (SO4) groups. K atoms reside in the cavities between two superimposed zweier double layers. The measured micro-indentation hardness of levantite gave VHN50 = 580(19) (mean of 14), range 550–611 kg/mm2, which correlates with 5 on the Mohs scale. Cleavage is good on (100). Twinning on (100) is polysynthetic or simple. The calculated density is 2.957 g cm–3. Levantite is optically negative with α = 1.608(2), β = 1.618(2), γ = 1.622(2) (λ = 589 nm), 2Vmeas. = 70(5)° and 2Vcalc. = 64.3°. Dispersion of the optical axes r > v is weak; the optical orientation is: Z = b, X ^ c = 22–27°; and it is non-pleochroic. Minerals of the levantite–latiumite series from Israel show characteristic Raman spectra with the main bands at 994 cm–11(SO4)2–] and 945 cm–11(PO4)3–]. The band intensity ν1(PO4)3–1(SO4) ratio is well correlated with P and S contents in the investigated minerals. The strongest lines in the powder diffraction pattern [dobs, Å (I, %) (hkl)] are: 3.0762(100)(310), 2.8551(96)($\bar 2$13), 2.9704(92)($\bar 3$12), 2.8573(83)(013), 2.5552(66)(020), 2.8228(48)(212), 2.8893(40)(400), and 3.0634(30)(103).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Bentor, Y.K. (editor) (1960) Israel. In: Lexique Stratigraphique International, Asie, Vol. III, (10.2). Centre national de la recherche scientifique, Paris.Google Scholar
Braithwaite, R.S.W., Cooper, M.P. and Hart, A.D. (1989) Queitite, a mineral new to Britain, from the Caldbeck Fells, Cumbria. Mineralogical Magazine, 53, 508509.Google Scholar
Cannillo, E., Dal Negro, A. and Rossi, G. (1973) The crystal structure of latiumite, a new type of sheet silicate. American Mineralogist, 58, 466470.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Ye., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.Google Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Pauluhn, A. and Olieric, V. (2017) Levantite, IMA 2017-010. CNMNC Newsletter No. 37, June 2017, page 740; Mineralogical Magazine, 81, 737742Google Scholar
Galuskina, I.O., Vapnik, Ye., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4 – a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.Google Scholar
Geller, Y.I., Burg, A., Halicz, L. and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 2536.Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Gross, S. (1984) Occurrence of ye’elimite and ellestadite in an unusual cobble from the ‘‘pseudo-conglomerate’’ of the Hatrurim Basin. Geological Survey of Israel Bulletin, 84, 14.Google Scholar
Jackson, B. (1990) Queitite, [Pb4Zn2(SO4)(SiO4)(Si2O7)], is an extremely rare mineral. This is the first recorded Scottish occurrence and only the third world-wide. Scottish Journal of Geology, 26, 5758.Google Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132Google Scholar
Kahlenberg, V. and Krüger, H. (2004) LaAlSiO5 and apatite-type La9.71(Si0.81Al0.19O4)6O2 – the crystal structures of two synthetic lanthanum alumosilicates. Solid State Sciences, 6, 553560.Google Scholar
Keller, P., Dunn, P.J. and Hess, H. (1979) Queitite, Pb4Zn2[SO4|SiO4|Si2O7], a new mineral from Tsumeb, South West Africa. Neues Jahrbuch für Mineralogie Mon., 1979, 203209.Google Scholar
Matthews, A. and Gross, S. (1980) Petrologic evolution of the Mottled Zone (Hatrurim) metamorphic complex of Israel. Israel Journal of Earth Sciences, 29, 93106.Google Scholar
Mellini, M., Merlino, S. and Rossi, G. (1977) The crystal structure of tuscanite. American Mineralogist, 62, 11141120.Google Scholar
Merlino, S. (2009) OD approach to polytypism: examples, problems, indications. Zeitschrift für Kristallographie, 224, 251260.Google Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.Google Scholar
Orlandi, P., Leoni, L., Mellini, M. and Merlino, S. (1977) Tuscanite, a new mineral related to latiumite. American Mineralogist, 62, 11101113.Google Scholar
Pasero, M. (2018) The New IMA List of Minerals. http://cnmnc.main.jp/Google Scholar
Peccerillo, A., Federico, M., Barbieri, M., Brilli, M. and Wu, T.V. (2010) Interaction between ultrapotassic magmas and carbonate rocks: Evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy. Geochimica et Cosmochimica Acta, 74, 29993022.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Rigaku Oxford Diffraction (2015) CrysAlisPro Software system, version 1.171.38.43, Rigaku Corporation.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, 414438.Google Scholar
Sokol, E.V., Kozmenko, O.A., Kokh, S.N. and Vapnik, Ye. (2012) Gas reservoirs in the Dead Sea area: evidence from chemistry of combustion metamorphic rocks in Nabi Musa fossil mud volcano. Russian Geology and Geophysics, 53, 745762.Google Scholar
Tilley, C.E. and Henry, N.F.M (1953) Latiumite (sulphatic potassium–calcium–aluminum silicate), a new mineral from Albano, Latium, Italy. Mineralogical Magazine, 30, 3945Google Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Vapnik, Ye., Galuskina, I., Palchik, V., Sokol, E.V., Galuskin, E., Lindsley-Griffin, N. and Stracher, G.B. (2015) Stone-tool workshops of the Hatrurim Basin, Israel: Mineralogy, geochemistry, and rock mechanics of lithic industrial materials. Pp. 282315 in: Coal and Peat Fires: A Global Perspective, (Stracher, G.B., Prakash, A. and Sokol, E.V., editors). Elsevier, New York.Google Scholar
Waltersperger, S., Olieric, V., Pradervand, C., Glettig, W., Salathe, M., Fuchs, M.R., Curtin, A., Wang, X., Ebner, S., Panepucci, E., Weinert, T., Schulze-Briese, C. and Wang, M (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. Journal of Synchrotron Radiation, 22, 895900.Google Scholar
Wojdyla, J.A., Kaminski, J.W., Panepucci, E., Ebner, S., Wang, X., Gabadinho, J. and Wang, M (2018) DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines. Journal of Synchrotron Radiation, 25, 293303.Google Scholar
Supplementary material: File

Galuskin et al. supplementary material

Galuskin et al. supplementary material

Download Galuskin et al. supplementary material(File)
File 177.7 KB