Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T05:14:56.246Z Has data issue: false hasContentIssue false

Leguernite, Bi12.67O14(SO4)5, a new Bi oxysulfate from the fumarole deposit of La Fossa crater, Vulcano, Aeolian Islands, Italy

Published online by Cambridge University Press:  05 July 2018

Anna Garavelli*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universitá degli Studi di Bari “A. Moro”, via E. Orabona 4, I-70125 Bari, Italy
Daniela Pinto
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universitá degli Studi di Bari “A. Moro”, via E. Orabona 4, I-70125 Bari, Italy
Donatella Mitolo
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universitá degli Studi di Bari “A. Moro”, via E. Orabona 4, I-70125 Bari, Italy
Luca Bindi
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Firenze, via G. La Pira 4, I-50121 Florence, Italy
*

Abstract

Leguernite, ideally Bi12.67O14(SO4)5, is a new mineral found in high-temperature fumarolic assemblages at La Fossa crater, Vulcano, Aeolian Islands, Italy. It occurs as aggregates of needleshaped crystals associated strictly with anglesite, balićžunićite and an unknown Bi sulfate. Leguernite is colourless to white, transparent, non-fluorescent, has a sub-adamantine lustre and a white streak. Electron microprobe data led to the chemical formula (on the basis of 34 anions p.f.u.) (Bi12.40Pb0.15)Σ=12.55S5.08O34. The calculated density is 7.375 g cm–3. A Raman spectrum collected on a single crystal of leguernite confirmed the anhydrous nature of the mineral.

Leguernite is monoclinic, space group P2, with a = 11.2486(11), b = 5.6568(6), c = 11.9139(10) Å , β = 99.177(7)º, V = 748.39(12) Å3 and Z = 1. The crystal structure is built up of Bi–O blocks of a fluorite-like structure with Bi12O14 composition separated by a single sulfate ion along [100] and by Bi(SO4)45– groups along [101]. It can also be described as composed of (001) layers with composition [Bi12O14(SO4)6+]n alternating with layers of composition [Bi(SO4)4]n5– along [001]. Leguernite shows significant similarities with the synthetic Bi14O16(SO4)5 compound.

The eight strongest reflections in the powder X-ray diffraction data [d in Å (I) (hkl)] are: 3.220 (100) (013), 3.100 (95) (11), 2.83 (30) (020), 2.931 (25) (302), 2.502 (25) (04), 2.035 (20) (322), 1.875 (20) (24) and 5.040 (15) (110).

The name is in honour of Franc¸ois “Fanfan” Le Guern (1942–2011), who was a very active volcanologist and specialist in volcanic gases and sublimates. Both the mineral and the mineral name have been approved by the IMA-CNMNC (2013–051).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S., Åström, A., Galy, J. and Meunier, G. (1973) Simple calculations of bond lengths and bond angles in certain oxides, fluorides or oxide fluorides of Sb3+, Te4+ and Pb2+. Journal of Solid State Chemistry, 6, 187190.CrossRefGoogle Scholar
Aurivillius, B., von Heidenstam, O. and Jonsson, I. (1960) On the Crystal Structures of (BiO)2SeO4·H2O, (BiO)2SO4·H2O, BiOHCrO4, and BiOHSeO4·–H2O. Acta Chemica Scandinavica, A14, 944947.CrossRefGoogle Scholar
Aurivillius, B. (1964) The crystal structures of Bi2O2SO4·H2O and BiOHSeO4·H2O. Acta Chemica Scandinavica, 18, 23752378.CrossRefGoogle Scholar
Aurivillius, B. (1987) Pyrolysis products of Bi2(SO4)3. Crystal structures of Bi26O27(SO4)12 and Bi14O16(SO4)5. Acta Chemica Scandinavica, A41, 415422.CrossRefGoogle Scholar
Aurivillius, B. (1988) Pyrolysis products of Bi4(SO4)3. II. Crystal structure of Bi2O(SO4)2 . Acta Chemica Scandinavica, A42, 95110.CrossRefGoogle Scholar
Blessing, B. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 3338.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Kuzmina, O.V., Mozgova, N.N., Organova, N.I., Trubkin, N.V. and Vurro, F. (1998) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. I. Se-bearing kirkiite, Pb10(Bi,As)6(S,Se)19. The Canadian Mineralogist, 36, 11051114.Google Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S., Organova, N.I., Trubkin, N.V. and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. III. Wittite and cannizzarite. The Canadian Mineralogist, 38, 2334.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Uspenskaya, T.Y. and Vurro, F. (2001) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. IV. Lillianite. The Canadian Mineralogist, 39, 13831396.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Paar, W.H., Topa, D. and Vurro, F. (2003) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. V. Selenian heyrovský ite. The Canadian Mineralogist, 41, 429440.CrossRefGoogle Scholar
Bruker, (2003a) APEX2. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin.Google Scholar
Bruker, (2003b) SAINT-IRIX. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin.Google Scholar
Capitani, G.C., Catelani, T., Gentile, P., Lucotti, A. and Zema, M. (2013) Cannonite [Bi2O(SO4)(OH)2] from Alfenza (Crodo, Italy): crystal structure and morphology. Mineralogical Magazine, 77, 30673079.CrossRefGoogle Scholar
Capitani, G.C., Mugnaioli, E., Rius, J., Gentile, P., Catelani, T., Lucotti, A. and Kolb, U. (2014) The Bi sulfates from the Alfenza Mine, Crodo, Italy: An automatic electron diffraction tomography (ADT) study. American Mineralogist, 99, 500510.CrossRefGoogle Scholar
Cheynet, B., Dall’Aglio, M., Garavelli, A., Grasso, M.F. and Vurro, F. (2000) Trace elements from fumaroles at Vulcano Island, Italy: rates of transport and a thermochemical model. Journal of Volcanology and Geothermal Research, 95, 273283.CrossRefGoogle Scholar
Crumpton, T.E. and Greaves, C. (2004) The structural chemistry and oxide ion conducting properties of the new bismuth oxide sulfate, Bi8O11(SO4). Journal of Materials Chemistry, 14, 24332437.CrossRefGoogle Scholar
Francesconi, M.G., Kibyshire, A.L. and Greaves, C. (1998) Synthesis and structure of Bi14O20(SO4), A new bismuth oxide sulfate. Chemistry of Materials, 10, 626632.CrossRefGoogle Scholar
Galy, J., Meunier, G., Andersson, S. and Åström, A. (1975) Stéréochimie des eléments comportant des paires non liées: Ge(II), As(III), Se(IV), Br(V), Sn(II), Sb(III), Te(IV), I(V), Xe(VI), Tl(I), Pb(II), et Bi(III) (oxydes, fluorures et oxyfluorures). Journal of Solid State Chemistry, 13, 142159.CrossRefGoogle Scholar
Garavelli, A., Laviano, R. and Vurro, F. (1997) Sublimate deposition from hydrothermal fluids at the Fossa crater – Vulcano, Italy. European Journal of Mineralogy, 9, 423432.CrossRefGoogle Scholar
Garavelli, A., Mozgova, N.N., Orlandi, P., Bonaccorsi, E., Pinto, D., Moëlo Y. and Borodaev, Yu.S. (2005) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite Pb20Sn2(Bi,As)22S54Cl6, a new mineral species. The Canadian Mineralogist, 43, 703711.CrossRefGoogle Scholar
Garavelli, A., Pinto, D., Bindi, L. and Mitolo, D. (2013a) Leguernite, IMA 2013-051. CNMNC Newsletter No. 17, October 2013, page 3002; Mineralogical Magazine, 77, 29973005.Google Scholar
Garavelli, A., Mitolo, D. Pinto, D. and Vurro, F. (2013b) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the La Fossa crater at Vulcano, Aeolian Islands. American Mineralogist, 98, 470477.CrossRefGoogle Scholar
Gillespie, R.J. (1963a) The valence-shell electron-pair repulsion (VSEPR) theory of directed valency (Review). Journal of Chemical Education, 40(6), 295301.CrossRefGoogle Scholar
Gillespie, R.J. (1963b) The stereochemistry of five-coordination. Part I. Non-transition elements. Journal of the Chemical Society, 46724678.CrossRefGoogle Scholar
Gillespie, R.J. (2008) Fifty years of the VSEPR model. Coordination Chemistry Reviews, 252, 13151327.CrossRefGoogle Scholar
Gilllespie, R.J. and Nyholm, R.S. (1957) Inorganic stereochemistry. Quarterly Review of the Chemical Society, 11, 339380.CrossRefGoogle Scholar
Golič, L., Graunar, M. and Lazarini, F. (1982) catena- Di-m-hydroxo-m3-oxo-dibismuth(III) sulfate. Acta Crystallographica, B38, 28812883.CrossRefGoogle Scholar
Graunar, M. and Lazarini, F. (1982) Di-m-hydroxo-bis [aquasulfatobismuth(III)]. Acta Crystallographica, B38, 28792881.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X–ray Crystallography, vol. 4. The Kynoch Press, Birmingham, UK.Google Scholar
Jones, W.M. (1984) Equilibrium pressures over the systems bismuth trisulfate dibismuthmonoxydisulfate and dibismuthmonoxydisulfate dibismuthdioxymonosulfate. Slow transformation between two crystalline forms of dibismuthmonoxydisulfate. Journal of Chemical Physics, 80, 3408.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (2000) PowderCell for Windows - Version 2.4 – Structure Visualisation/ Manipulation, Powder Pattern Calculation and Profile Fitting, Federal Institute for Materials Research and Testing, Berlin, Germany.Google Scholar
Laugier, J. and Bochu, B. (2003) LMPG Suite of Programs for Windows for the Interpretation of X-ray Experiments. ENSP Laboratoire des Matériaux et du Génie Physique, 38042 Saint Martin d’He`res, France.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship. I. Derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J., Petříček, V., Kampf, A.R., Herbst-Imer, R. and Raudsepp, M. (2011) The crystal structure of Yb2(SO4)3·3H2O and its decomposition product, b-Yb2(SO4)3. Journal of Solid State Chemistry, 184, 23222328.CrossRefGoogle Scholar
Mitolo, D., Pinto, D., Capitani, G.C., Garavelli, A. and Pinto D. (2011) Transmission electron microscopy investigation of Ag-free lillianite and heyrovský ite from Vulcano, Aeolian Islands, Italy. American Mineralogist, 96, 288300.CrossRefGoogle Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Moore, P.B. (1973) Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. American Mineralogist, 58, 3242.Google Scholar
Palmer, K.J., Wong, R.Y. and Lee, K.S. (1972) The crystal structure of ferric ammonium sulfate trihydrate, FeNH4(SO4)2·3H2O. Acta Crystallographica, B28, 236241.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006a) Comparative crystal-structure study of Ag-free lillianite and galenobismutite from Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 44, 159175.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Bonaccorsi, E., Borodaev, Y.S., Garavelli, A., Garbarino, C., Makovicky, E. and Vurro, F. (2006b) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VII. Cl-bearing galenobismutite. The Canadian Mineralogist, 44, 443457.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Garbarino, C., Makovicky, E. and Vurro, F. (2006c) First occurrence of close-to-ideal kirkiite at Vulcano (Aeolian Islands, Italy): chemical data and single-crystal Xray study. European Journal of Mineralogy, 18, 393401.CrossRefGoogle Scholar
Pinto, D., Bonaccorsi, E., Balić-Žunić, T. and Makovicky, E. (2008) The crystal structure of vurroite, Pb20Sn2(Bi,As)22S54Cl6: OD-character, polytypism, twinning, and modular description. American Mineralogist, 93, 713727.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A. and Vurro, F. (2011) Structure refinement of Ag-free heyrovský ite from Vulcano (Aeolian Islands, Italy). American Mineralogist, 96, 11201128.CrossRefGoogle Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2013) Balićžunićite, IMA 2012-098. CNMNC Newsletter No. 16, August 2013, page 2699; Mineralogical Magazine, 77, 26952709.Google Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2014) Balićžunićite, Bi2O(SO4)2, a new fumarole mineral from La Fossa crater at Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 10431055.CrossRefGoogle Scholar
Rögner, P. (2005) Riomarinait, ein neues Wismutmineral vom Abbau Falcacci, Rio Marina, Elba (Italien). Aufschluss, 56, 5360.Google Scholar
Sheldrick, G.M. (2008a) SADABS. Version 2008/1. University of Göttingen, Germany. Sheldrick, G.M. (2008b) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Smirnov, V.I., Ponomareva, V.G., Yuklin, Yu.M. and Uvarov, N.F. (2003) Fluorite-related phases in the Bi2O3–SO3 system. Solid State Ionics, 156, 7984.CrossRefGoogle Scholar
Stanley, C.J., Roberts, A.C., Harris, D.C., Criddle, A.J. and Szymań ski, J.T. (1992) Cannoni t e , Bi20(OH)2SO4, a new mineral from Marysvale, Utah, USA. Mineralogical Magazine, 56, 605609.CrossRefGoogle Scholar
Vurro, F., Garavelli, A., Garbarino, C., Moëlo, Y. and Borodaev, Y.S. (1999) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite, PbBi4(S,Se)7, a new mineral species. The Canadian Mineralogist, 37, 14991506.Google Scholar
West, D.V., McQueen, T.M., Posen, I.D., Ke, X., Huang, Q., Zandbergen, H.W., Williams, A.J., Schiffer, P. and Cava, R.J. (2009) The A2+Mn5(SO4)6 family of triangular lattice, ferrimagnetic sulfates. Journal of Solid State Chemistry, 182, 13431350.CrossRefGoogle Scholar
Supplementary material: File

Garavelli et al. supplementary material

Supplementary Table 6

Download Garavelli et al. supplementary material(File)
File 2.4 MB