Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T05:16:32.802Z Has data issue: false hasContentIssue false

Kamphaugite-(Y) from La Cabrera massif, Spain: a low-temperature hydrothermal Y-REE carbonate

Published online by Cambridge University Press:  05 July 2018

J. González del Tánago*
Affiliation:
Departamento de Petrología y Geoquímica y Instituto de Geología Económica CSIC, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid, Spain
A. La Iglesia
Affiliation:
Departamento de Petrología y Geoquímica y Instituto de Geología Económica CSIC, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid, Spain
A. Delgado
Affiliation:
Departmentamento de Ciencias de la Tierra y Química Ambiental, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
*

Abstract

Kamphaugite-(Y) occurs as white to cream-coloured spherical to semi-spherical aggregates of radial crystals in the La Cabrera granitic pluton (Spanish Central System). It mainly occurs on the free surfaces of alkali feldspar, quartz, calcite, kainosite-(Y) and laumontite, and inside miarolitic cavities. La Cabrera kamphaugite-(Y) has an average composition of Ca0.94Y0.89REE0.21(CO3)2 [F0.05(OH)0.95]·1.19H2O. Negative δ13CV-PDB values (–14 to –15‰) indicate a meteoric carbon source. Textural relations between kamphaugite-(Y) and coexisting minerals, its relatively high δ18OV-SMOW values (+25 to +26‰), and the occurrence of laumontite inclusions in kamphaugite-(Y), point to a genesis at < 50°C during very low-temperature post-magmatic hydrothermal activity.

Type
Editorial
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellido, F. (1979) Estudio petrolόgico y geoquimíco del Plutόn de La Cabrera. PhD thesis, Universidad de Complutense, Madrid.Google Scholar
Boni, M., Gilg, H. A., Aversa, G. and Balassone, G. (2003) The ‘Calamine’ of southwest Sardinia: geology, mineralogy and stable isotope geochemistry. Economic Geology, 98, 731748.CrossRefGoogle Scholar
Caballero, J. M., Casquet, C., Galindo, C., González Casado, J. M., Snelling, N. and Tornos, F. (1992) Dating of hydrothermal events in the Sierra de Guadarrama, Iberian Hercynian Belt, Spain. Geogaceta, 11, 18—22.Google Scholar
Cerling, T. E. (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosoils. American Journal of Science, 291, 377—400.CrossRefGoogle Scholar
Černý, P. (1991) Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18(2), 49—67.Google Scholar
Fehér, B., Skakáll, S. and Nagy, G. (2003) Kamphaugite-(Y), a rare hydrous Ca-Y-carbonate mineral from Szarvaskõ, Bükk Mountains, Hungary. Ada Minereralogy and Petrology. Abstracts series 1, Szeged, 30.Google Scholar
Gamboni, A. and Gamboni, T. (1998) Kamphaugite di Cala Francese. Revista Mineralogica Italiana, 12, 2728.Google Scholar
González del Tánago, J. (1997) Allanita-(Nd) y minerales de elementos raros en las pegmatitas de La Cabrera, Madrid (Sistema Iberico Central). Revista Sociedad Geolόgica de España, 10, 83105.Google Scholar
González del Tánago, J. and La Iglesia, A. (1998) Zeolitas y minerales cálcicos de baja temperatura en las pegmatitas graniticas del pluton de La Cabrera (Sistema Central Español). Estudios Geolόgicos, 54, 181190.Google Scholar
González del Tánago, J., Bellido, F. and García Cacho, L. (1986) Mineralogía y evolutiόn de las pegmatitas graniticas de La Cabrera (Sistema Central Español). Boletín Institute Geolόgico y Minero de España,, 97, 103121.Google Scholar
González Laguna, R., Lozano, R. and Casquet, C. (2000) Efectos de la alteratiόn hidrotermal en los minerales accesorios del granito de La Cabrera (Sistema Central Español). Estudio al microscopio electrόnico de barrido (SEM + EDS). Boletin Sociedad Española de Mineralogía, 23, 135151.Google Scholar
González del Tanago, .J and González del Tánago Chanrai, .J (2002) Minerales y Minas de Madrid. Comunidad de Madrid and Mundiprensa, Madrid, Spain, 271 pp.Google Scholar
Hogarth, D. D. (1972) The Evans-Lou Pegmatite, Quebec: A unique Yttrium-Niobium-Bismuth-Vanadium Mineral Assemblage. Mineralogical Record, 3, 6979.Google Scholar
Hoskin, P. W. O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Pp. 27—62in: Zircon (Hanchar, J. M. and Hoskin, P. W. O., editors). Reviews in Mineralogy & Geochemistry, 53, Mineralogical Society of America, Washington, D.C.Google Scholar
Jarosewich, E. and Boatner, L. A. (1991) Rare-earth element reference samples for electron mieroprobe analysis. Geostandards Newsletter, 15, 397398.CrossRefGoogle Scholar
jarosewich, E., Nelen, J. A. and Norberg, JA. (1980) Reference samples for electron mieroprobe analysis. Geostandards Newsletter, 4, 4347.CrossRefGoogle Scholar
Kim, S. T. and O'Neil, J. R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Ada, 61, 34613475.CrossRefGoogle Scholar
Kyser, T. K. (1986) Stable isotope variations in the mantle. Pp. 141164 in: Stable Isotopes in High-Temperature Geological Processes (Valley, J. W., Taylor, H. P. Jr., and O'Neil, H. R., editors). Reviews in Mineralogy, 16, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Lozano, R. (2003) Petrología de los rellenos cálcicos hidrotermales de las cavidades miarolíticas del plutόn de La Cabrera (Madrid). PhD thesis, Universidad de Complutense, Madrid, Spain.Google Scholar
McCrea, J. M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18, 849857.CrossRefGoogle Scholar
Melchiorre, E. B. and Enders, M. S. (2003) Stable isotope geochemistry of copper carbonates at the Northwest Extension mine, Morenci District, Arizona: Implications for conditions of supergene oxidation and related mineralization. Economic Geology, 98, 607621.Google Scholar
Melchiorre, E. B. and Williams, P. (2001) Stable isotope characterization of the thermal profiles and subsurface biological activity during oxidation of the Great Australia Deposit, Cloncurry, Queesland, Australia. Economic Geology, 96, 16851693.CrossRefGoogle Scholar
Melchiorre, E. B., Criss, R. E. and Rose, T. (1999) Oxygen and carbon isotope study of natural and synthetic malachite. Economic Geology, 94, 245259.CrossRefGoogle Scholar
Melchiorre, E. B., Criss, R. E. and Rose, T. (2000) Oxygen and carbon isotope study of natural and synthetic azurite. Economic Geology, 95, 623630.Google Scholar
Möller, P. (1989) REE(Y), Nb, and Ta enrichment in pegmatites and carbonatite-alkalic rock complexes. Pp. 103–144 in: Lanthanides, Tantalum and Niobium (Möller, P., Černý, P. and Saupé, F., editors). Springer Verlag, Berlin.CrossRefGoogle Scholar
O'Neil, J. R., Clayton, R. N. and Mayeda, T. K. (1969) Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 55475558.CrossRefGoogle Scholar
Orlandi, P. (1997) Zibaldone di mineralogia italiana. Revista Mineralogica Italiana, 11, 179185.Google Scholar
Pérez del Villar, L., Pelayo, M., Cόzar, J. S., De la Cruz, B., Pardillo, J., Relies, E., Caballero, E., Delgado, A., Nuñez, R., Ivanovich, M. and Hasler, S. E. (1997) Mineralogical and geochemical evidence of the migration/retention processes of U and Th in fracture fillings from the El Berrocal granitic site (Spain). Journal of Contaminant Hydrology, 26, 4560.CrossRefGoogle Scholar
Pérez Soba, C., Villaseca, C. and González del Tánago, J. (2003) Zircon chemistry in Hercynian granites and granulites: some petrogenetic relationships. Adas IV Congreso Ibérico de Geoquímica, Coimbra, 78–80.Google Scholar
Petersen, O. V., Gault, R. A. and Jahn, S. J. (2001) Kamphaugit-(Y) von der Rössing-Mine. In: Namibia, Zauberwelt edler Steine und Kristalle (Jahn, S., Medenbach, O., Nidermayr, G. and Schneider, G., editors). Bode Verlag GmbH, Germany.Google Scholar
Plata, A. (1994) Comopsiόn isotόpica de las pre-cipitaciones y aguas subterráneas de la Península Ibérica. Centro de Estudios y Experimentatiόn de Obras Públicas (CEDEX), Madrid, Spain.Google Scholar
Raade, G. and Brastad, K. (1993) Kamphaugite-(Y), a new hydrous Ca-(Y,REE)-carbonate mineral. European Journal of Mineralogy, 5, 679683.CrossRefGoogle Scholar
Raade, G., Sæbø, P. C., Austrheim, H. and Kristiansen, R. (1993) Kuliokite-(Y) and its alteration products kainosite-(Y) and kamphaugite-(Y) from granite pegmatite Nørdal, Norway. European Journal of Mineralogy, 5, 691698.CrossRefGoogle Scholar
Reyes, E., Perez del Villar, L., Delgado, A., Cortezzi, G., Núñez, R., Pelayo, M. and Cozar, J. S. (1998) Carbonation processes at the El Berrocal natural analogue granitic system (Spain): Inferences from mineralogical and stable isotope studies. Chemical Geology, 150, 293315.CrossRefGoogle Scholar
Romanek, C. S., Grossman, E. X. and Morse, J. W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Ada, 56, 419430.CrossRefGoogle Scholar
Rømming, C., Kocharian, A. K. and Raade, G. (1993) The crystal structure of kamphaugite-(Y). European Journal of Mineralogy, 5, 685690.CrossRefGoogle Scholar
Talma, A. S. and Netterberg, F. (1983) Stable isotope abundances in calcretes. Pp. 221—233in: Residual Deposits: Surface Related Weathering Processes and Materials (Wilson, R. C., editor). Blackwell, Oxford, UK.Google Scholar
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust. Its Composition and Evolution. Blackwell Science Publishers, Oxford, UK.Google Scholar
Tornos, F., Delgado, A., Casquet, C. and Galindo, C. (2000) 300 million years of episodic hydrothermal activity: stable isotope evidence from hydrothermal rocks of the Eastern Iberian Central System. Mineralium Deposita, 35, 551569.CrossRefGoogle Scholar
Villaseca, C. and Herreros, V. (2000) A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Transactions of the Royal Society of Edinburgh: Earth Science, 91, 207219.CrossRefGoogle Scholar
Villaseca, C., Barbero, L., Huertas, M. J., Andonaegui, P. and Bellido, F. (1993) A cross-section through Hercynian granites of Central Iberian Zone. Excursion Guide. Servicio de Publicaciones, C.S.I.C, Madrid, Spain.Google Scholar
Wallwork, K., Kolitsch, U., Pring, A. and Nasdala, L. (2002) Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia. Mineralogical Magazine, 66, 181188.CrossRefGoogle Scholar
Wiedemann, H. G. and Bayer, G. (1987) Notes of the thermal decomposition of dolomite. Thermochimica Ada, 111, 479485.CrossRefGoogle Scholar