Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T23:11:26.909Z Has data issue: false hasContentIssue false

Jahnsite—whiteite solid solutions and associated minerals in the phosphate pegmatite at Hagendorf-Süd, Bavaria, Germany

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
W. G. Mumme
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
S. M. Neville
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
N. C. Wilson
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
W. D. Birch
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

Abstract

Secondary phosphate assemblages from the Hagendorf Süd granitic pegmatite, containing the new Mn-Al phosphate mineral, nordgauite, have been characterized using scanning electron microscopy and electron microprobe analysis. Nordgauite nodules enclose crystals of the jahnsite—whiteite group of minerals, showing pronounced compositional zoning, spanning the full range of Fe/Al ratios between jahnsite and whiteite. The whiteite-rich members are F-bearing, whereas the jahnsite-rich members contain no F. Associated minerals include sphalerite, apatite, parascholzite, zwieselite-triplite solid solutions and a kingsmountite-related mineral. The average compositions of whiteite and jahnsite from different zoned regions correspond to jahnsite-(CaMnMn), whiteite-(CaMnMn) and the previously undescribed whiteite-(CaMnFe) end-members. Mo-Kα CCD intensity data were collected on a twinned crystal of the (CaMnMn)-dominant whiteite and refined in P2/a to wRobs = 0.064 for 1015 observed reflections.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, W.D., Grey, I.E., Mills, S.J., Pring, A., Wilson, N.C. and Keck, E. (2010) Nordgauite, MnAl2(PO4)2(F,OH)2.5.5H2O, a new mineral from the Hagendorf Siid pegmatite, Bavaria, Germany. Mineralogical Magazine, submitted. CrossRefGoogle Scholar
Bruker, (2006) Apex-II, Area detector software package v2.1. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.Google Scholar
Chernyatieva, A.P., Krivovichev, S.V., Yakovenchuk, V.N. and Pakhomovsky, Y.A. (2010) Crystal chemistry of a new CaMnMn-dominant member of the whiteite group. Abstracts, IMA2010, 20th General Meeting of the International Mineralogical Association, August, 2010, Budapest, Hungary. Ada Mineralogica-Petrographica Abstract Series, Volume 6, p. 716, Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary.Google Scholar
Dill, H.G., Weber, B., Gerdes, A. and Melcher, F. (2008) The Fe-Mn phosphate aplite ‘Silbergrube’ near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein province. Mineralogical Magazine, 72, 11191144.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R., White, J.S. and Ramik, R.A. (1979) Kingsmountite, a new mineral isostructural with montgomeryite. The Canadian Mineralogist, 17, 579582.Google Scholar
Dunn, P.J., Roberts, W.L., Campbell, T.J. and Leavens, P.B. (1983) Red montgomeryite and associated minerals from the Tip Top Pegmatite with notes on kingsmountite and calcioferrite. The Mineralogical Record, May-June, 195-197.Google Scholar
Dunn, P.J., Grice, J.D. and Metropolis, W.C. (1988) Zodacite, the Mn analogue of montgomerytite, from Mangualde, Portugal. American Mineralogist, 73, 11791181.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Grice, J.D., Dunn, P.J. and Ramik, R.A. (1989) Whiteite-(CaMnMg), a new mineral species from the Tip Top pegmatite, Custer, South Dakota. The Canadian Mineralogist, 27, 699702.Google Scholar
Grice, J.D., Dunn, P.J. and Ramik, R.A. (1990) Jahnsite-(CaMnMn), a new member of the whiteite group from Mangualde, Beira, Portugal. American Mineralogist, 75, 401404.Google Scholar
Kampf, A.R., Steele, I.M. and Loomis, T.A. (2008) Jahnsite-(NaFeMg), a new mineral from the Tip Top mine, Custer County, South Dakota: Description and crystal structure. American Mineralogist, 93, 940945.CrossRefGoogle Scholar
Kastning, J. and Schliiter, J. (1994) Die mineralien von Hagendorf und ihre bestimmung. Schriften des mineralogischen museums der Universitat Hamburg, Band 2, C. Weise Verlag, Munich, Germany, 95 pp.Google Scholar
Marzoni Fecia Di Cossato, Y., Orlandi, P. and Vezzalini, G. (1989) Rittmannite, a new mineral species of the whiteite group from the Mangualde granitic pegmatite, Portugal. The Canadian Mineralogist, 27, 447449.Google Scholar
Moore, P.B. and Araki, T. (1974a) Montgomeryite, Ca4Mg(H2O)12[A14(OH)4(PO4)6]: Its crystal structure and relationship to vauxite, Fe2 +(H2O)4[Al4(OH)4(PO4)4].4H2O. American Mineralogist, 59, 843850.Google Scholar
Moore, P.B. and Araki, T. (19746) Jahnsite, CaMn2+Mg2(H2O)8Fel+(OH)2[PO4]4: A novel stereoisomerism of ligands about octahedral corner-chains. American Mineralogist, 59, 964973.Google Scholar
Moore, P.B. and Ito, J. (1978) I. Whiteite, a new species, and a proposed nomenclature for the jahnsite-whiteite complex series. II. New data on xanthox-enite. III. Salmonsite discredited. Mineralogical Magazine, 42, 309323.CrossRefGoogle Scholar
Mücke, A. (1981) The paragenesis of the phosphate minerals of the Hagendorf pegmatite — a general view. Chemie de Erde/Geochemistry, 40, 217234.Google Scholar
Petricek, V., Dusek, M. and Palatinus, L. (2000) Jana2000. Structure Determination Software Programs, Institute of Physics, Praha, Czech Republic.Google Scholar
Putnis, A. (2002) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Roda, E., Pesquera, A., Fontan, F. and Keller, P. (2004) Phosphate mineral associations in the Canada pegmatite (Salamanca, Spain): Paragenetic relationships, chemical compositions, and implications for pegmatite evolution. American Mineralogist, 89, 110125.CrossRefGoogle Scholar
Taxer, K. and Bartl, H. (1997) Die “geordnete gemittelte” kristallstruktur von parascholzit. Zur dimorphie von CaZn2(PO4)2.2H2O, parascholzit-scholzit. Zeitschrift fiir Kristallographie, 212, 197202.Google Scholar