Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T23:30:36.003Z Has data issue: false hasContentIssue false

Iron—titanium oxide minerals in the Series, Kap Edvard Holm, East Upper Layered Greenland

Published online by Cambridge University Press:  05 July 2018

R. Elsdon*
Affiliation:
Department of Geology, University College, Belfield, Dublin 4, Eire

Summary

Electron-probe data are presented for coexisting magnetite and ilmenite from seven gabbro cumulates and a gabbro pegmatite, and bulk FeO-Fe2O3-TiO2 analyses for ten magnetite-ilmenite assemblages. The oxides equilibrated at 580 to 720 °C and oxygen fugacities of 10−15·0 to 10−20·5 bar. Late-stage alteration, associated with growth of hydrothermal silicates, resulted in the breakdown of ilmenite to rutile and the dissolution of magnetite. Higher levels in the intrusion equilibrated at lower temperatures than deeper levels. All features described are consistent with the retention of the initial water content of the magma within the walls of the intrusion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, (A. T.) Jr.), 1968a. Amer. Journ. Sci., 266, 704.CrossRefGoogle Scholar
Anderson, (A. T.) Jr.) 1968b. Journ. Gcol., 76, 528.Google Scholar
Buddington, (A. F.), Fahey, (J.), and Vlisidis, (A.), 1963, Journ. Petrology, 4, 138.CrossRefGoogle Scholar
Buddington, (A. F.), Fahey, (J.), and Vlisidis, (A.) and Lindsley, (D. H.), 1964. Ibid. 5, 310.Google Scholar
Carmichael, (I. S. E.), 1967. Amer. Min., 52, 1815.Google Scholar
Darken, (L. S.) and Gurry, (R. W.), 1946. Journ. Amer. Chem. Soc., 68, 798.CrossRefGoogle Scholar
Davidson, (A.) and Wyllie, (P. J.), 1968. Econ. Geol, 63, 950.CrossRefGoogle Scholar
Elsdon, (R.), 1969. Geol. Mag., 106, 45.Google Scholar
Elsdon, (R.) 1970. Earth Planet. Sci. Lett., 9, 313.CrossRefGoogle Scholar
Elsdon, (R.) 1971a. Journ. Petrology,, 12, 499.CrossRefGoogle Scholar
Elsdon, (R.) 1971b. Min. Mag., 38, 49.CrossRefGoogle Scholar
Gibb, (F. G. F.) and Henderson, (C. M. B.), 1971. Contr. Min. Petr., 30, 119.Google Scholar
Hahn, (J. C. Jr.) and Muan, (A.), 1960. Amer. Journ. Sci., 258, 66.CrossRefGoogle Scholar
Hamilton, (D. L.), Burnham, (C. W.), and Osborn, (E. F.), 1964. Journ. Petrology, 5, 21.CrossRefGoogle Scholar
Karkhanavala, (M. D.) and Momin, (A. C.), 1959. Econ. Geol, 54, 1095.Google Scholar
Martin, (R. F.) and Piwinskii, (A. J.), 1969. Ibid. 64, 798.CrossRefGoogle Scholar
Nesbitt, (R. W.) and Hamilton, (D. L.), 1970. Phys. Earth Planet. Interiors, 3, 309.Google Scholar
Nicholls, (I. A.), 1971. Journ. Petrology,, 12, 67.Google Scholar
Speidel, (D. H.), 1970. Amer. Journ. Sci., 268, 341.Google Scholar
Sweeton, (F. H.) and Baes (C. F., /r.), 1970. Journ. Chem. Thermodynamics, 2,, 479.Google Scholar
Taylor, (R. W.), 1964. Amer. Min., 49, 1016.Google Scholar
Vincent, (E. A.) and Philips (R.), 1954. Geochimica Acta,, 9, 154.Google Scholar
Webster, (A. H.) and Bright (N. F. H.), 1961. Journ. Amer. Ceram. Soc. 44, 110.CrossRefGoogle Scholar
Yoder, (H. S. Jr.) and Tilley, (C. E.), 1962. Journ. Petrology, 3, 342.Google Scholar