Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:39:59.614Z Has data issue: false hasContentIssue false

In situ X-ray absorption spectroscopy measurement of vapour-brine fractionation of antimony at hydrothermal conditions

Published online by Cambridge University Press:  05 July 2018

G. S. Pokrovski*
Affiliation:
Experimental Geochemistry and Biogeochemistry Group, LMTG - Université de Toulouse - CNRS - IRD - OMP, Laboratoire des Mécanismes et Transferts en Géologie, 14 Av. E. Belin, F-31400 Toulouse, France
J. Roux
Affiliation:
Equipe PMM - Institut de Physique du Globe de Paris, 4 Place Jussieu, F-75252 Paris, cedex 05, France
J.-L. Hazemann
Affiliation:
Institut Néel, CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9, France
A. YU. Borisova
Affiliation:
Experimental Geochemistry and Biogeochemistry Group, LMTG - Université de Toulouse - CNRS - IRD - OMP, Laboratoire des Mécanismes et Transferts en Géologie, 14 Av. E. Belin, F-31400 Toulouse, France Geological Department, Moscow State University, Moscow, Russia
A. A. Gonchar
Affiliation:
Department of Chemical Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
M. P. Lemeshko
Affiliation:
Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
*

Abstract

Despite the growing geological evidence that fluid boiling and vapour-liquid separation affect the distribution of metals in magmatic-hydrothermal systems significantly, there are few experimental data on the chemical status and partitioning of metals in the vapour and liquid phases. Here we report on an in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of antimony speciation and partitioning in the system Sb2O3-H2O-NaCl-HCl at 400°C and pressures 270—300 bar corresponding to the vapour-liquid equilibrium. Experiments were performed using a spectroscopic cell which allows simultaneous determination of the total concentration and atomic environment of the absorbing element (Sb) in each phase. Results show that quantitative vapour-brine separation of a supercritical aqueous salt fluid can be achieved by a controlled decompression and monitoring the X-ray absorbance of the fluid phase. Antimony concentrations in equilibrium with Sb2O3 (cubic, senarmontite) in the coexisting vapour and liquid phases and corresponding SbIII vapour-liquid partitioning coefficients are in agreement with recent data obtained using batch-reactor solubility techniques. The XAFS spectra analysis shows that hydroxy-chloride complexes, probably Sb(OH)2Cl0, are dominant both in the vapour and liquid phase in a salt-water system at acidic conditions. This first in situ XAFS study of element fractionation between coexisting volatile and dense phases opens new possibilities for systematic investigations of vapour-brine and fluid-melt immiscibility phenomena, avoiding many experimental artifacts common in less direct techniques.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderko, A. and Pitzer, K.S. (1993) Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochimica et Cosmochimica Ada, 57, 16571680.CrossRefGoogle Scholar
Ashley, P.M., Craw, D., Graham, B.P. and Chappell, D.A. (2003) Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 77, 1 — 14.CrossRefGoogle Scholar
Audetat, A. and Pettke, T. (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochimica et Cosmochimica Ada, 67, 97121.CrossRefGoogle Scholar
Audedat, A., Giinther, D. and Heinrich, C.A. (2000) Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Economic Geology, 95, 1563 — 1581.Google Scholar
Bakker, RJ. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 323.CrossRefGoogle Scholar
Barnes, H.L. (1997) Geochemistry of Hydrothermal Ore Deposits , third edition (Barnes, H.L., editor). Wiley, New York. Bischoff, J.L. (1991) Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300 to 500°C. American Journal of Science, 291, 309338.Google Scholar
Boyle, R.W. and Jonasson, I.R. (1984) The geochemistry of antimony and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 20, 223302.CrossRefGoogle Scholar
Cook, NJ. (1996) Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore Geology Reviews, 11, 303338.CrossRefGoogle Scholar
Cromer, D.T. and Liberman, D. (1970) Relativistic calculations of anomalous scattering factors for X-rays. Journal of Chemical Physics, 53, 18911898.CrossRefGoogle Scholar
Elam, W.T., Ravel, B.D. and Sieber, J.R. (2002) A new atomic database for X-ray spectroscopic calculations. Radiation Physics and Chemistry, 63, 121128.CrossRefGoogle Scholar
Foustoukos, D.I. and Seyfried, W.E. (2007) Trace element partitioning between vapour, brine and halite under extreme phase separation conditions. Geochimica et Cosmochimica Ada, 71, 20562071.CrossRefGoogle Scholar
Frank, M.R., Candela, P.A. and Piccoli, P.M. (1998) K-feldspar-muscovite-andalusite-quartz-brine phase equilibria: an experimental study at 25 to 60 MPa and 400 to 550°C. Geochimica et Cosmochimica Ada, 62, 37173727.CrossRefGoogle Scholar
Gonchar, A.A. (2007) Structures and X—ray absorption spectra of antimony oxides and chlorides in hydrothermal solutions. B.Sc. thesis, South Federal University, Rostov-on-Don, Russia, 21 pp. (in Russian).Google Scholar
Hedenquist, J.W. and Lowenstern, IB. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519527.CrossRefGoogle Scholar
Heinrich, C.A., Giinther, D., Audedat, A., Ulrich, T. and Frischknecht, R. (1999) Metal fractionation between magmatic brine and vapour, and the link between porphyry-style and epithermal Cu-Au deposits. Geology, 27, 755758.2.3.CO;2>CrossRefGoogle Scholar
Krupp, R.E. (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C. Geochimica et Cosmochimica Ada, 52, 30053015.CrossRefGoogle Scholar
Kukuljan, J.A., Alvarez, J.L. and Fernandez-Prini, R. (1999) Distribution of B(OH)3 between water and steam at high temperatures. Journal of Chemical Thermodynamics, 31, 15111522.CrossRefGoogle Scholar
Leibscher, A., Meixner, A., Romer, R.L. and Heinrich W. (2005) Liquid-vapour fractionation of boron and boron isotopes: Experimental calibration at 400°C/23 MPa to 450°C/42 MPa. Geochimica et Cosmochimica Ada, 69, 56935704.CrossRefGoogle Scholar
Marshall, W.L. and Chen, C-T.A. (1982) Amorphous silica solubilities-IV. Postulated sulfate-silicic acid complex. Geochimica et Cosmochimica Ada, 46, 367370.CrossRefGoogle Scholar
Mernagh, T.P., Heinrich, C.A., Leckie, J.F., Carville, D.P., Gilbert, D.J., Valenta, R.K. and Wyborn, L.A.I. (1994) Chemistry of low-temperature hydrothermal gold, platinum, and palladium (iuranium) mineralization at Coronation Hill, Northern Territory, Australia. Economic Geology, 89, 1053 — 1073.CrossRefGoogle Scholar
Newville, M. (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322324.CrossRefGoogle ScholarPubMed
Oelkers, E.H., Sherman, D.M., Ragnarsdottir, K.V. and Collins, C. (1998) An EXAFS spectroscopic study of aqueous antimony(III)-chloride complexation at temperatures from 25 to 250°C. Chemical Geology, 151, 2127.CrossRefGoogle Scholar
Palmer, D.A., Simonson, J.M. and Jensen, J.P. (2004) Partitioning of electrolytes to steam and their solubilities in steam. Pp. 409439 in: Aqueous Systems at Elevated Temperatures and Pressures (Palmer, D.A., Fernandez-Prini, R. and Harvey, A.H., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Pettke, T., Halter, W.E., Driesner, T., von Quadt, A. and Heinrich, C.A. (2001) The porphyry to epithermal link: preliminary fluid chemical results from the Apuseni Mountains, Romania, and Famatina, Argentinian Andes. 11th Annual Goldschmidt V.M. Conference, Journal of Conference Abstracts, 3537.Google Scholar
Pokrovski, G.S., Zakirov, I.V., Roux, J., Testemale, D., Hazemann, J.-L., Bychkov, A.Y. and Golikova, G.V. (2002) Experimental study of arsenic speciation in vapour phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochimica et Cosmochimica Ada, 66, 34533480.CrossRefGoogle Scholar
Pokrovski, G.S., Roux, J., Hazemann, J.-L. and Testemale, D. (2005a) An X-ray absorption spectro-scopy study of argutite solubility and germanium aqueous speciation in hydrothermal fluids to 500°C and 400 bar. Chemical Geology, 217, 127145.CrossRefGoogle Scholar
Pokrovski, G.S., Roux, J. and Harrichoury, J.-C. (20056) Fluid density control on vapour-liquid partitioning of metals in hydrothermal systems. Geology, 33, 657660.CrossRefGoogle Scholar
Pokrovski, G.S., Borisova, A.Yu., Roux, J., Hazemann, J.-L., Petdang, A., Telia, M. and Testemale, D. (2006) Antimony speciation in saline hydrothermal fluids: A combined X-ray absorption fine structure and solubility study. Geochimica et Cosmochimica Ada, 70, 41964214.CrossRefGoogle Scholar
Pokrovski, G.S., Borisova, A.Y., Harrichoury, J.-C. (2008) The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems. Earth and Planetary Science Letters, 266, 345362.CrossRefGoogle Scholar
Proux, O., Biquard, X., Lahera, E., Menthonnex, J.-J., Prat, A., Ulrich, O., Soldo, Y., Trevisson, P., Kapoujyan, G., Perroux, G., Taunier, P., Grand, D., Jeantet, P., Deleglise, M., Roux, J.-P. and Hazemann, J.-L. (2005) FAME: a new beamline for X-ray absorption investigations of very diluted systems of environmental, material and biological interests. Physica Scripta, T115, 970973.CrossRefGoogle Scholar
Proux, O., Nassif, V., Prat, A., Ulrich, O., Lahera, E., Biquard, X., Menthonnex, J.-J. and Hazemann, J.-L. (2006) Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances. Journal of Synchrotron Radiation, 13, 5968.CrossRefGoogle ScholarPubMed
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.CrossRefGoogle ScholarPubMed
Rickers, K., Luders, V. and Bleuet, P. (2006) Elemental partitioning in liquid-vapour fluid inclusion assemblages during sub-critical phase separation. Geochimica et Cosmochimica Ada, 70, A534.CrossRefGoogle Scholar
Schott, J., Pokrovski, G.S., Tagirov, B.R, Hazemann, J.-L. and Proux, O. (2006) First in situ XAFS determination of gold solubility and speciation in sulfur-rich hydrothermal solutions. Geochimica et Cosmochimica Ada, 70, 18A, Supplement 1, p. 13.CrossRefGoogle Scholar
Seward, T.M. and Driesner, T. (2004) Hydrothermal solution structure: experiments and computer simulations. Pp. 149182 in: Aqueous Systems at Elevated Temperatures and Pressures (Palmer, D.A., Fernandez-Prini, R. and Harvey, A.H., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Sherman, D.M. (2001) Quantum chemistry and classical simulations of metal complexes in aqueous solutions. Pp. 273317 in: Molecular Modeling Theory and Applications in the Geosciences (Cygan, R.T. and Kubicki, J.D., editors). Reviews in Mineralogy and Geochemistry, 42, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Simmons, S.F. and Browne, P.R.L. (2000) Hydrothermal minerals and precious metals in the Braodlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95, 971999.CrossRefGoogle Scholar
Styrikovich, M.A., Tshvirashvili, D.G. and Hebieridze, D.P. (1960) A study of the solubility of boric acid in saturated water vapour. Doklady Akademii Nauk SSSR, 134, 615617 (in Russian).Google Scholar
Testemale, D., Argoud, R., Geaymond, O. and Hazemann, J.-L. (2005) High pressure/high temperature cell for X-ray absorption and scattering techniques. Reviews of Scientific Instruments, 76, 043905043909.CrossRefGoogle Scholar
Williams-Jones, A.E. and Heinrich, C.A. (2005) Vapour transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100, 12871312.CrossRefGoogle Scholar
Wilson, N.J., Craw, D. and Hunter, K. (2004) Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environmental Pollution, 129, 257266.CrossRefGoogle ScholarPubMed
Wood, S. (1989) Raman spectroscopic determination of ore metals in hydrothermal solutions: I. Speciation of antimony in alkaline sulfide solutions at 25°C. Geochimica et Cosmochimica Ada, 53, 237244.CrossRefGoogle Scholar
Wood, S., Crerar, D.A. and Borcsik, M.P. (1987) Solubility of the assemblage pyrite-pyrrhotite-mag-netite-sphalerite-galena-gold-stibnite-bismuthinite-argentite-molybdenite in H2O-NaCl-CO2 solutions from 200 to 350°C. Economic Geology, 82, 18641887.CrossRefGoogle Scholar
Zotov, N. and Keppler, H. (2002) Silica speciation in aqueous fluids at high pressures and temperatures. Chemical Geology, 184, 7182.CrossRefGoogle Scholar
Zotov, A.V., Kudrin, A.V., Levin, K.A., Shikina, N.D. and Varyash, L.N. (1995) Experimental studies of the solubility and complexing of selected ore elements (Au, Ag, Cu, Mo, As, Sb, Hg) in aqueous solutions. Pp. 95 — 137 in: Fluids in the Crust: Equilibrium and Transport Properties (K.I. Shmulovich, B.W.D. Yardley and Gonchar, G.G., editors), Chapman & Hall, London.Google Scholar
Zotov, A.V., Shikina, N.D. and Akinfiev, N.N. (2003) Thermodynamie properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochimica et Cosmochimica Ada, 67, 1821 — 1836.CrossRefGoogle Scholar