Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T01:53:07.204Z Has data issue: false hasContentIssue false

Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan

Published online by Cambridge University Press:  02 January 2018

D. Nishio-Hamane*
Affiliation:
Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
M. Ohnishi
Affiliation:
12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan
K. Momma
Affiliation:
Department of Geology and Palaeontology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
N. Shimobayashi
Affiliation:
Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
R. Miyawaki
Affiliation:
Department of Geology and Palaeontology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
T. Minakawa
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
S. Inaba
Affiliation:
Inaba-Shinju Corporation, Minamiise, Mie 516-0109, Japan
*

Abstract

Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, occurs in cavities in the altered gabbro xenolith in the sepentinized dunite exposed at Suisho-dani, Ise City, Mie Prefecture, Japan. Imayoshiite is colourless and transparent with a vitreous lustre and its aggregates are white with a silky lustre. Imayoshiite has a white streak. Its Mohs hardness is 2–3. It is brittle, the cleavage is distinct on {100} and the fracture is uneven. The mineral is uniaxial (–) with the indices of refraction ω = 1.497(2) and ε = 1.470(2) in white light. Imayoshiite is hexagonal, P63, a = 11.0264(11), c = 10.6052(16) Å by powder diffraction and a = 11.04592(2), c = 10.61502(19) Å by single-crystal diffraction. The structural refinement converged to R1 = 2.35%. Imayoshiite is the first member of the ettringite group with both CO3 and B(OH)4 anions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Chukanov, N.V., Britvin, S.N., Van, K.V., Möckel, S. and Zadov, A.E. (2012) Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new member of the ettringite group from the Eifel area, Germany. The Canadian Mineralogist, 50, 5563.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R., Leavens, P.B. and Baum, J.L. (1983) Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. American Mineralogist, 68, 10331037.Google Scholar
Gatta, G.D., McIntyre, G.J., Swanson, J.G. and Jacobsen S.D. (2012) Minerals in cement chemistry: a singlecrystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. American Mineralogist, 97, 10601069.CrossRefGoogle Scholar
Goetz-Neunhoeffer, F. and Neubauer, J. (2006) Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O) structure for quantitative X-ray diffraction analysis. Powder Diffraction, 21, 411.CrossRefGoogle Scholar
Granger, M.M. and Protas, J. (1969) Détermination et etude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)·12(H2O). Acta Crystallographica, B25, 19431951.CrossRefGoogle Scholar
Gross, S. (1980) Bentorite. A new mineral from the Hatrurim area, west of the Dead Sea, Israel. Israel Journal of Earth Science, 29, 8184.Google Scholar
Kusachi, I., Shiraishi, N., Shimada, K., Ohnishi, M. and Kobayashi, S. (2008) CO3-rich charlesite from the Fuka mine, Okayama Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 103, 4751.CrossRefGoogle Scholar
Malinko, S.V., Chukanov, N.V., Dubinchuk, V.T., Zadov, A.E. and Koporulina, E.V. (2001) Buryatite Ca3(Si,Fe3+,Al)[SO4][B(OH)4](OH)5O·12H2O, a new mi n e r a l. Zap i s k i Vs e r o s s i j s kogo Mineralogicheskogo Obshchestva, 130, 7278.Google Scholar
McDonald, A.M., Peterson, O.V., Gault, R.A., Johnsen, O., Niedermayr, G., Brandstätter, F. and Giester, G. (2001) Micheelsenite, (Ca,Y)3Al(PO3OH,CO3) (CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. Neues Jahrbuch für Mineralogie, Monatshefte, 2001, 337351.Google Scholar
Merlino, S. and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, 12931301.CrossRefGoogle Scholar
Minakawa, T., Inaba, S. and Noto, S. (1986) Oyelite from Suisho-dani, Ise, Mie Prefecture. Journal of the Japanese Association of Mineralogist, Petrologists and Economic Geologists, 81, 138142.CrossRefGoogle Scholar
Momma, K. and Izuni, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology d a t a. Journ a l o f Appl i e d Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nishio-Hamane, D., Ohnishi, M., Momma, K., Shimobayashi, N., Miyawaki, R., Minakawa, T. and Inaba, S. (2013) Imayoshiite, IMA 2013-069. CNMNC Newsletter No. 18, December 2013, page 3251; Mineralogical Magazine, 77, 32493258.Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 456462.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Britvin, S.N., Kabalov, Y.K., Göttlicher, J., Yapaskurt, V.O., Zadov, A.E., Krivovichev, S.V., Schüller, W. and Ternes, B. (2012) The sulfite anion in ettringite-group minerals: a new m i n e r a l s pe c i e s h i e l s c h e r i t e , Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite-hielscherite solid-solution series. Mineralogical Magazine, 76, 11331152.CrossRefGoogle Scholar
Pushcharovsky, D.Y., Lebedeva, Y.S., Zubkova, N.V., Pasero, M., Bellezza, M., Merlino, S. and Chukanov, N.V. (2004) The crystal structure of sturmanite. The Canadian Mineralogist, 42, 723729.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar