Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:56:07.112Z Has data issue: false hasContentIssue false

Hloušekite, (Ni,Co)Cu4(AsO4)2(AsO3OH)2(H2O)9, a new member of the lindackerite supergroup from Jáchymov, Czech Republic

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, 182 21, Czech Republic
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9, 193 00, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
A. V. Kasatkin
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka str., 22, block 1, 119034 Moscow, Russia
P. Škácha
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9, 193 00, Czech Republic Mining Museum Příbram, Hynka Kličky Place 293, Příbram VI, 261 01, Czech Republic
F. Veselovský
Affiliation:
Czech Geological Survey, Klarov 3, 118 21, Prague 1, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, 182 21, Czech Republic
P. Ondruš
Affiliation:
Biskupský dvůr 2, Prague 1, 11000, Czech Republic
*

Abstract

Hloušekite, (Ni,Co)Cu4(AsO4)2(AsO3OH)2(H2O)9, is a new supergene arsenate mineral from the Geister vein (Rovnost mine), Jáchymov (St Joachimsthal), Western Bohemia, Czech Republic. It was found along with veselovský ite, pradetite, lavendulan, arsenolite, babánekite and gypsum on the surface of strongly altered ore fragments containing dominant tennantite and chalcopyrite. Hloušekite forms thin, lath-like crystals, locally elongated reaching up to 3 mm across. It is transparent, has a pale green colour with vitreous lustre, has a greyish-white streak and it is very brittle with an uneven fracture. It does not fluoresce under shortwave or longwave ultraviolet radiation. Cleavage on {010} is perfect; the Mohs hardness is 2–3. The calculated density is 3.295 g cm–3. Hloušekite is optically biaxial with α’ = 1.653(2) and γ’ = 1.73. The estimated optical orientation is γ’ vs. elongation (c) = 14(1)°. In larger grains it is weakly to moderately pleochroic (α = colourless, γ = pale green to green). Hloušekite is triclinic, space group P, a = 6.4010(6), b = 8.0041(6), c = 10.3969(14) Å , α = 85.824(8), β = 79.873(9), γ = 84.655(7)° and V = 521.23(10) Å3, with Z = 1, a:b:c = 0.800:1:1.299. The eight strongest lines in the powder X-ray diffraction (XRD) pattern [d in Å (I)(hkl)] are 10.211(100)(001), 7.974(9)(010), 3.984(6)(020), 3.656(5)(12), 3.631(5)(01), 3.241(5)(022), 3.145(5)(200) and 3.006(5)(210). Chemical analysis by electron microprobe yielded MgO0.20, FeO0.10, NiO 5.79, CoO1.80, CuO29.53, ZnO 0.66, Al2O3 0.14, P2O5 0.11, As2O5 45.01, H2O 17.71 (calc.), for a total of 101.05 wt.%. The resulting empirical formula, calculated by stoichiometry (9H2O + 2OH), obtained from the crystal structure, is (Ni0.79Co0.25)Σ1.04(Cu3.78Zn0.08Mg0.05Al0.03Fe0.01)Σ3.95 (AsO4 )1.98(PO4 )0.02(AsO3OH)2.00(H2O)9.00 . The ideal endmember formula , NiCu4(AsO4)2(AsO3OH)2(H2O)9.00, requires NiO7.23, CuO30.81, As2O5 44.51, H2O17.45, total 100.00 wt.%. The crystal structure of hloušekite was solved by charge flipping from single-crystal XRD data and refined to R1 = 0.0599 for 1441 reflections with [Iobs > 3σ(I)]. Hloušekite is a new member of the lindackerite group (also including lindackerite, pradetite and veselovský ite) of the lindackerite supergroup. The ondrušite group of the lindackerite supergroup includes ondrušite, chudobaite, geigerite and klajite. The establishment of these two groups reflects the difference between the crystal structures of their members, mainly in the coordination environment of the Me cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agilent Technologies (2012) Crysalis RED, CCD data reduction GUI. Agilent Technologies Ltd, Oxford, UK.Google Scholar
Bergerhoff, G., Berndt, M., Brandenburg, K. and Degen, T. (1999) Concerning inorganic crystal structure types. Acta Crystallographica, B55, 147156.CrossRefGoogle Scholar
Brown, I.D., (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (M.O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D., (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244248.CrossRefGoogle Scholar
Burke, E.A.J., Sejkora, J., Sarp, H. and Chiappero, P.-J. (2007) Revalidation of pradetite as a mineral. Archive des Sciences (Genéve), 60, 5154.Google Scholar
Capillas, C., Perez-Mato, J.M., and Aroyo, M.I., (2007) Maximal symmetry transition paths for reconstructive phase transitions. Journal of Physics: Condensed Matter, 19, 275203.Google Scholar
Clark, R.C., and Reid, J.S., (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica, A51, 887897.CrossRefGoogle Scholar
Dorner, R. and Weber, K. (1976) The crystal structure of chudobaite , (Mg,Zn)5H2(AsO4 ) 4.10H2 O. Naturwissenschaften, 63, 243.Google Scholar
Graeser, S., Schwander, H., Bianchi, R., Pilati, T. and Gramaccioli, C.M., (1989) Geigerite, the Mn analogue of chudobaite: its description and crystal structure. American Mineralogist, 74, 676684.Google Scholar
Hybler, J., Ondruš, P., Císařová, I., Petříček, V. and Veselovský , F. (2003) Crystal structure of lindackerite, (Cu,Co,Ni)Cu4(AsO4)2(AsO3OH)2·9H2O, from Jáchymov, Czech Republic. European Journal of Mineralogy, 15, 10351042.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2003) CELREF: Unit Cell Refinement Program from Powder Diffraction Diagram. Laboratoires des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble, France.Google Scholar
Mandarino, J.A., (1981) The Gladstone–Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H., and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Ondruš, P., Veselovský, F., Skála, R., Císařová, I., Hloušek, J., Frýda, J., Vavřín, I., Čejka, J. and Gabašová, A. (1997) New naturally occurring phases of secondary origin from Jáchymov (Joachimsthal). Journal of the Czech Geological Society, 42, 77108.Google Scholar
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála, R., Sejkora, J. and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech Geological Society, 48, 19147.Google Scholar
Ondruš, P., Skála, R., Plášil, J., Sejkora, J., Veselovský , F., Čejka, J., Kallistová, A., Hloušek, J., Fejfarová, K., Škoda, R., Dušek, M., Gabašová, A., Machovič, V. and Lapč ák, L. (2013) Švenekite , Ca[AsO2(OH)2]2, from Jáchymov, Czech Republic. Mineralogical Magazine, 77, 523536.CrossRefGoogle Scholar
Orobengoa, D., Capillas, C., Aroyo, M.I., and Perez-Mato, J.M., (2009) AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. Journal of Applied Crystallography, A42, 820833.CrossRefGoogle Scholar
Oszlányi, G. and Süto˝, A. (2004) Ab initio structure solution by charge flipping. Acta Crystallographica, A60, 134141.CrossRefGoogle Scholar
Oszlányi, G. and Süto˝, A. (2008) The charge flipping algorithm. Acta Crystallographica, A64, 123134.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge flipping algorithm in crystallography. Acta Crystallographica, B69, 116.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Prague, Czech Republic.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie – Crystalline Materials, 229, 345352.CrossRefGoogle Scholar
Plášil, J., Sejkora, J., Čejka, J., Novák, M., Viňals, J., Ondruš, P., Veselovský , F., Škácha, P., Jehlička, J., Goliáš, V. and Hloušek, J. (2010) Metarauchite, Ni(UO2)2(AsO4)2.H2O, from Jáchymov, Czech Republic, and Schneeberg, Germany: a new member of the autunite group. The Canadian Mineralogist, 48, 335350.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Dušek, M., Veselovský , F., Ondruš, P., Majzlan, J. and Mrázek, Z. (2013a) Štěpite, U(AsO3OH)2·4H2O, from Jáchymov, Czech Republic: the first natural arsenate of tetravalent uranium. Mineralogical Magazine, 77, 137152.CrossRefGoogle Scholar
Plášil, J., Hloušek, J. and Škoda, R. (2013b) Chalconatronite, Na2Cu(CO3)2(H2O)3, from the "sv. Duch" vein, Jáchymov (Czech Republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 21, 228233.Google Scholar
Plášil, J., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Veselovský , F. and Majzlan, J. (2013c) Vysoký ite, U4+[AsO2(OH)2]4.4H2O, a new mineral from Jáchymov, Czech Republic. Mineralogical Magazine, 77, 30553066.CrossRefGoogle Scholar
Plášil, J., Kasatkin, A.V., Škoda, R. and Škácha, P. (2014a) Klajite, MnCu4(AsO4)2(AsO3OH)2(H2O)10, from Jáchymov (Czech Republic): the second world occurrence. Mineralogical Magazine, 78, 134143.CrossRefGoogle Scholar
Plášil, J., Veselovský, F., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Škácha, P. and Kasatkin, A.V., (2014b) Mathesiusite, K5(UO2)4(SO4)4 (VO5)(H2O)4, a new uranyl sulfate mineral from Jáchymov, Czech Republic. American Mineralogist, 99, 625–63.CrossRefGoogle Scholar
Pouchou, J.L., and Pichoir, F. (1985) ‘PAP’ (j rZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Sarp, H. and Dominik, B. (1995) Redéfinition de la lindackerite: sa formule chimique, ses données cristallographiques et optiques. Archives des Sciences, Gene`ve, 48, 239250.Google Scholar
Sejkora, J., Ondruš, P. and Novák, M. (2010) Veselovský ite, triclinic (Zn,Cu,Co)Cu4(AsO4)2 (AsO3OH)2·9H2O, a Zn-dominant analogue of lindackerite. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 8390.CrossRefGoogle Scholar
Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. and Jebavá, I. (2011a) Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St Joachimsthal), Czech Republic. Journal of Geosciences, 56, 257271.Google Scholar
Sejkora, J., Plášil, J., Veselovský , F., Císařová, I. and Hloušek, J. (2011b) Ondrušite, CaCu4(AsO4)2 (AsO3OH)2·10H2O, a new mineral species from the Jáchymov ore district, Czech Republic: description and crystal-structure determination. The Canadian Mineralogist, 49, 885897.CrossRefGoogle Scholar
Sejkora, J., Babka, K. and Pavlíček, R. (2012) Saléeite from the uranium ore district Jáchymov (Czech Republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 20, 208212.Google Scholar
Sejkora, J., Plášil, J. and Bureš, B. (2013) Unusual association of supergene uranium minerals from the Jan Evangelista vein, Jáchymov (Czech Republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 21, 143156.Google Scholar
Strunz, H. (1960) Chudobait, ein neues Mineral von Tsumeb. Neues Jahrbuch für Mineralogie, Monatshefte, 1960, 17.Google Scholar
Szakáll, S., Fehér, B., Bigi, S. and Mádai, F. (2011) Klajite from Recsk (Hungary), the first Mn-Cu arsenate mineral. European Journal of Mineralogy, 29, 829835.CrossRefGoogle Scholar
Tasci, E.S., de la Flor, G., Orobengoa, D., Capillas, C., Pérez-Mato, J.M., and Aroyo, M.I., (2012) An introduction to the tools hosted in the Bilbao Crystallographic Server. EPJ Web of Conferences, 22, 00009.CrossRefGoogle Scholar
Vogl, J.F., (1853) Lindackerit, eine neue Mineralspecies, und Lavendulan von Joachimsthal , nebst Bemerkungen über die Erzfuührung der Gänge. Jahrbuch der Kaiserliche-Königliche Geologisches Reichanstalts, 4, 552557.Google Scholar