Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T14:37:07.826Z Has data issue: false hasContentIssue false

High-temperature synchrotron X-ray powder diffraction study of Cs2XSi5O12(X = Cd, Cu, Zn) leucites

Published online by Cambridge University Press:  05 July 2018

A. M. T. Bell*
Affiliation:
HASYLAB/DESY, Notkestraβe 85, 22607 Hamburg, Germany
C. M. B. Henderson
Affiliation:
SEAES, University of Manchester, Manchester M13 9PL, UK ASTeC, Science and Technology Facilities Council (STFC) Laboratory, Daresbury WA4 4AD, UK
*

Abstract

Synchrotron X-ray powder diffraction data have been collected on three synthetic leucite analogues with the general formula Cs2XSi5O12(X = Cd, Cu, Zn) between 295 and 1173 K. All three samples have the orthorhombic Pbca leucite structure at room temperature with ordered framework T-site cations. The sample with X = Cd retains the Pbca structure over the whole of the investigated temperature range. The sample with X = Cu also retains the Pbca structure, but there is a transition to a less distorted structure with a larger unit-cell volume at ∼333 K. The sample with X = Zn shows evidence for a transition to a previously unknown Pa cubic structure, with some T-site cation disorder, at 566 K, on heating. This transition is reversible on cooling to 633 K.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beger, R.M. (1969) The crystal structure and chemical composition of pollucite. Zeitschrif t fü r Kristallographie, 129, 280302.CrossRefGoogle Scholar
Bell, A.M.T. and Henderson, C.M.B. (1994a) Rietveld refinement of dry-synthesized Rb2ZnSi5O12 leucite by synchrotron X-ray powder diffraction. Acta Crystallographica, C50, 984986.Google Scholar
Bell, A.M.T. and Henderson, C.M.B. (1994b) Rietveld refinement of the structures of dry-synthesized MFeIIISi2O6 leucites (M = K, Rb, Cs) by synchrotron X-ray powder diffraction. Acta Crystallographica, C50, 15311536.Google Scholar
Bell, A.M.T. and Henderson, C.M.B. (1996) Rietveld refinement of the orthorhombic Pbca structures of Rb2CdSi5O12, Cs2 MnSi5O12, Cs2 CoSi5O12, and Cs2NiSi5O12 leucites by synchrotron x-ray powder diffraction. Acta Crystallographica, C52, 21322139.Google Scholar
Bell, A.M.T. and Henderson, C.M.B. (2009) Crystal structures and cation ordering in Cs2MgSi5O12, Rb2MgSi5O12 and Cs2ZnSi5O12 leucites. Acta Crystallographica, B65, 435444.CrossRefGoogle Scholar
Bell, A.M.T. and Henderson, C.M.B. (2011) Cs2CuSi5O12 phase transition? Zeitschrift fü r Kristallographie Proceedings, 2011, 337342.Google Scholar
Bell, A.M.T., Henderson, C.M.B., Redfern, S.A.T., Cernik, R.J., Champness, P.E., Fitch, A.N. and Kohn, S.C. (1994a) Structures of synthetic K2MgSi5O12 leucites by integrated X-ray powder diffraction, electron diffraction and 29Si MAS NMR methods. Acta Crystallographica, B50, 3141.CrossRefGoogle Scholar
Bell, A.M.T., Redfern, S.A.T., Henderson, C.M.B. and Kohn, S.C. (1994b) Structural relations and tetrahedral ordering pattern of synthetic orthorhombic Cs2CdSi5O12 leucite: a combined synchrotron X-ray powder diffraction and multinuclear MAS NMR study. Acta Crystallographica, B50, 560566.CrossRefGoogle Scholar
Bell, A.M.T., Knight, K.S., Henderson, C.M.B. and Fitch, A.N. (2010) Revision of the structure of Cs2CuSi5O12 leucite as orthorhombic Pbca. Acta Crystallographica, B66, 5159.CrossRefGoogle Scholar
Bosch, P., Caputo, D., Liguori, B. and Colella, C. (2004) Safe trapping of Cs in heat-treated zeolite matrices. Journal of Nuclear Materials, 324, 183188.CrossRefGoogle Scholar
Bushnell-Wye, G. and Cernik, R.J. (1992) The general purpose two-circle diffractometer on Station 9.1, Daresbury Laboratory. Review of Scientific Instruments, 63, 9991001.CrossRefGoogle Scholar
Dove, M.T., Cool, T., Palmer, D.C., Putnis, A., Salje, E.K.H. and Winkler, B. (1993) On the role of Al-Si ordering in the cubic-tetragonal phase transition of leucite. American Mineralogist, 78, 486492.Google Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T. and Pavese, A. (2008) Leucite at high pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist, 93, 15881596.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., Sanchez- Valle, C. and Pavese, A. (2009a) Elastic behavior and phase stability of pollucite, a potential host for nuclear waste. American Mineralogist, 94, 11371143.CrossRefGoogle Scholar
Gatta, G.D., Rinaldi, R., McIntyre, G.J., Nénert, G., Bellatreccia, F., Guastoni, A. and Della Ventura, G. (2009b) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. American Mineralogist, 94, 15601568.CrossRefGoogle Scholar
Heinrich, A.R. and Baerlocher, C. (1991) X-ray Rietveld structure determination of Cs2CuSi5O12, a pollucite analogue. Acta Crystallographica, C47, 237241.Google Scholar
Ito, Y., Kuehner, S. and Ghose, S. (1995) The structure of a high temperature phase in a cationic conductor, KAlSi2O6. Solid State Ionics, 79, 120123.CrossRefGoogle Scholar
Knapp, M., Baehtz, C., Ehrenberg, H. and Fuess, H. (2004a) The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: status and capabilities. Journal of Synchrotron Radiation, 11, 328334.CrossRefGoogle Scholar
Knapp, M., Joco, V., Baehtz, C., Brecht, H.H., Berghäuser, A., Ehrenberg, H., von Seggern, H. and Fuess, H. (2004b) Position-sensitive detector system OBI for High Resolution X-Ray Powder Diffraction using on-site readable image plates. Nuclear Instruments and Methods in Physics Research A, 521, 565570.CrossRefGoogle Scholar
Kohn, S.C., Henderson, C.M.B. and Dupree, R. (1994) Leucite Analogues X2YSi5O12, where X = K, Rb, Cs; Y = Mg, Zn, Cd. Physics and Chemistry of Minerals, 21, 176190.CrossRefGoogle Scholar
Martucci, A., Pecorari, P. and Cruciani, G. (2011) Dehydration process and transient channel deformations of slightly hydrated boron leucite: An ‘‘in situ’’ time-resolved synchrotron powder diffraction study. Microporous and Mesoporous Materials, 142, 570576.CrossRefGoogle Scholar
Mazzi, F., Galli, E. and Gottardi, G. (1976) The crystal structure of tetragonal leucite. American Mineralogist, 61, 108115.Google Scholar
Mimura, H., Shibata, M. and Akiba, K. (1990) Surface alteration of pollucite under hydrothermal conditions. Journal of Nuclear Science and Technology, 27, 835843.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Palmer, D.C., Dove, M.T., Ibberson, R.M. and Powell, B.M. (1997) Structural behavior, crystal chemistry, and phase transitions in substituted leucite: highresolution neutron powder diffraction studies. American Mineralogist, 82, 1629.CrossRefGoogle Scholar
Redfern, S.A.T. and Henderson, C.M.B. (1996) Monoclinic-orthorhombic phase transition in the K2MgSi5O1 2 leuc i t e anal o g. Amer i can Mineralogist, 81, 369374.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rodriguez-Carvajal, J. (2001) Recent developments of the program FULLPROF. Commission on Powder Diffraction Newsletter, 26, 1219. [http://www.ill. eu/sites/fullprof/].Google Scholar
Salje, E.K.H. (1990) Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, Cambridge, UK.Google Scholar
Sanchez-Valle, C., Chio, C-H. and Gatta, G.D. (2010) Single - crystalel as tic properties of (Cs,Na)AlSi2O6·H2O pollucite: a zeolite with potential use for long-term storage of Cs radioisotopes. Journal of Applied Physics, 108, http://dx.doi.org/ 10.1063/1.3504613.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Taylor, D. and Henderson, C.M.B. (1968) The thermal expansion of the leucite group of minerals. American Mineralogist, 53, 14761489.Google Scholar
Torres-Martinez, L.M. and West, A.R. (1986) New family of silicate phases with the pollucite structure. Zeitschrift für Kristallographie, 175, 17.CrossRefGoogle Scholar
Torres-Martinez, L.M. and West, A.R. (1989) Polluciteand leucite-related phases: A2BX5O12 and ACX2O6. Zeitschrift für Anorganische und Allgemeine Chemie, 573, 223230.CrossRefGoogle Scholar
Torres Martinez, L.M., Gard, J.A., Howie, R.A. and West, A.R. (1984) Synthesis of Cs2BeSi5O12 with a pollucite structure. Journal of Solid State Chemistry, 51, 100103.CrossRefGoogle Scholar
Yanagisawa, K., Nishioka, M. and Yamasaki, N. (1987) Immobilization of cesium into pollucite structure by hydrothermal hot-pressing. Journal of Nuclear Science and Technology, 24, 5160.CrossRefGoogle Scholar
Yanase, I., Kobayashi, H., Shibasaki, Y. and Mitamura, T. (1997) Tetragonal-to-cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. Journal of the American Ceramic Society, 80, 26932695.CrossRefGoogle Scholar
Yanase, I., Kobayashi, H., Shibasaki, Y. and Mitamura, T. (1997) Tetragonal-to-cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. Journal of the American Ceramic Society, 80, 26932695.CrossRefGoogle Scholar