Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T15:30:46.478Z Has data issue: false hasContentIssue false

High-temperature breakdown of the synthetic iodine analogue of vanadinite, Pb5(VO4)3I: an apatite-related compound for iodine radioisotope immobilization?

Published online by Cambridge University Press:  05 July 2018

S. A. T. Redfern*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
S. E. Smith
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
E. R. Maddrell
Affiliation:
National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG, UK
*

Abstract

The thermal stability of the synthetic iodine analogue of vanadinite, Pb5(VO4)3I, in air has been investigated by in situ high temperature X-ray powder diffraction between 300 and 1070 K. Rietveld refinement of phase fractions shows that breakdown to lead orthovanadate, Pb3(VO4)2, begins at temperatures above 540 K, with complete loss of iodine above 680 K. More than 50 K below the onset of breakdown, the unit-cell parameters of Pb5(VO4)3I show anomalous contraction in the crystallographic x–y plane (reduction of a) which we associate with movement of iodine within the [0001] channels of the structure. The implications of these results for immobilization of 129I in potential apatite-related crystalline radioactive waste forms are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audubert, F. and Lartigue, J. (2000) Iodine immobilization in apatites. Atalante Conference, 4.13, 4 pp.Google Scholar
Audubert, F., Carpena, J., Lacout, J.L. and Tetard, F. (1997) Elaboration of an iodine-bearing apatite iodine diffusion into a Pb3(VO4)2 matrix. Solid State Ionics, 95, 113119.CrossRefGoogle Scholar
Audubert, F., Savariault, J.M. and Lacout, J.L. (1999) Pentalead tris(vanadate) iodide, a defect vanadinite-type compound. Acta Crystallographica, 55, 271273.Google Scholar
Brunet, F., Allan, D.R., Redfern, S.A.T., Angel, R.J., Miletich, R., Reichmann, H.J., Sergent, J. and Hanfland, M. (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. European Journal of Mineralogy, 11, 10231035.CrossRefGoogle Scholar
Chaumont, J., Soulet, S., Krupa, J.C. and Carpena, J. (2002) Competition between disorder creation and annealing in fluorapatite nuclear waste forms. Journal of Nuclear Materials, 301, 122128.CrossRefGoogle Scholar
Gatta, G.D., Lee, Y. and Kao, C. (2009) Elastic behaviour of vanadinite, Pb10(VO4)6Cl2, a micro-porous non-zeolitic mineral. Physics and Chemistry of Minerals, 36, 311317.CrossRefGoogle Scholar
Guy, C, Audubert, F., Lartigue, J., Latrille, C, Advocat, T. and Fillet, C. (2002) New conditionings for separated long-lived radionuclides. Comptes Rendus Physique, 3, 827837.Google Scholar
Hyatt, N.C., Hriljac, J.A., Choudhry, A., Malpass, L., Sheppard, GP. and Maddrell, E.R. (2004) Zeolite-salt occlusion: a potential route for the immobilization of iodine-129. Materials Research Society Symposium Proceedings, 807, 359364.CrossRefGoogle Scholar
Kasatani, H, Umeki, T. and Terauchi, H. (1992) Crystal structure analysis and phase transition in lead orthovanadate Pb3(VO4)2 . Journal of the Physical Society of Japan, 61, 23092316.Google Scholar
Kiat, J.M., Garnier, P. and Pinot, M. (1991) Neutron and X-ray Rietveld analysis of the three phases of lead orthovanadate Pb3V2O8: importance of the electronic lone pairs in the martensitic transitions. Journal of Solid State Chemistry, 91, 339349.Google Scholar
Kuok, M.H., Lee, S.C., Tang, S.H and Ishibashi, Y. (1989) The ferroelastic phase transition in lead orthovanadate. Solid State Communications, 71, 797799.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86748.Google Scholar
Lian, J., Dong, Z., Zhang, J., Wang, L., White, T. and Ewing, R.C. (2010) Ion irradiation-induced amor-phization in vanadate-phosphate apatites. Microscopy and Micro analysis, 16, 16341635.CrossRefGoogle Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Tonegawa, T., Ikoma, T., Suetsugu, Y., Igawa, N., Matsushita, Y., Yoshioka, T., Hanagata, N. and Tanaka, J. (2010) Thermal expansion of a type A carbonate apatite. Materials Science and Engineering, B173, 171175.CrossRefGoogle Scholar
Trocellier, P. (2000) Immobilization of radionulcides in single-phase crystalline waste forms: a review on their intrinsic properties and long term behaviour. Annales de Chimie—Science des Materiaux, 25, 321337.CrossRefGoogle Scholar
Trocellier, P. (2001) Chemical durability of high level nuclear waste forms. Annales de Chimie—Science des Materiaux, 26, 113130.Google Scholar
Trombe, J.-C. (1973) Contribution a l'etude de la decomposition et de la reactivite de certaines apatites hydroxylees et carbonatees. Annales de Chimie, 8, 251269.Google Scholar
Uno, M., Shinohara, M., Kurosaki, K. and Yamanaka, S. (2001) Some properties of a lead vanado-iodoapatite Pb10(VO4)6I2 . Journal of Nuclear Materials, 294, 119122.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C, Matzke, Hj., Motta, A.T., Natasi, M., Salje, E.H.K., Vance, E.R. and Zinkle, S.J. (1998) Radiation effects in crystal-line ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13, 14341484.CrossRefGoogle Scholar
White, T., Ferraris, C, Kim, J. and Madhavi, S. (2005) Apatite—An Adaptive Framework Structure. Pp. 307401 in: Micro-and Mesoporous Mineral Phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St. Louis, Missouri, USA.Google Scholar
Zhang, M., Maddrell, E.R, Abraitis, P.K. and Salje, E.K.H. (2007) Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: an infrared and Raman spectroscopic study. Materials Science and Engineering B, 137, 149155.CrossRefGoogle Scholar