Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T08:44:41.525Z Has data issue: false hasContentIssue false

High-temperature behaviour of fluorcarletonite, KNa4Ca4Si8O18(CO3)4(F,OH)⋅H2O, from the Murun Alkaline Complex, Russia, appraised by experimental and theoretical methods

Published online by Cambridge University Press:  25 September 2024

Ernesto Mesto
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
Maria Lacalamita*
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
Ekaterina Kaneva
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia Sidorov Mineralogical Museum, Irkutsk National Research Technical University, 83 Lermontov Str., 664074 Irkutsk, Russia
Roman Shendrik
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia
Alexander Bogdanov
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia
Marcello Merli
Affiliation:
Earth and Sea Sciences Department, University of Palermo, via V. Archirafi 36, I-90123 Palermo, Italy
Emanuela Schingaro
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
*
*Corresponding author: Maria Lacalamita; Email: [email protected]

Abstract

The thermal behaviour of fluorcarletonite, KNa4Ca4Si8O18(CO3)4(F,OH)⋅H2O, from the charoitites of the Severny district at the Malyy Murun massif, Murun complex, NW Aldan Shield, Siberia, Russia, has been investigated in order to understand the temperature-induced changes in the crystal structure of this rare silicate. The study has been carried out combining in situ high-temperature single-crystal X-ray diffraction (T range 25–550°C), ex situ high-temperature Fourier-transform infrared spectroscopy (25–700°C) and ab initio calculations. An increasing trend of lattice parameters and cell volume was observed in the 150–550°C temperature range, when the mineral underwent a progressive dehydration process. At 550°C ~40% water loss was detected. If compared with the fluorcarletonite structure at room temperature, the partially dehydrated fluorcarletonite shows: the same space group (P4/mbm); increased distances between the oxygens of the H2O molecules (O11w and O12w) and their Na-centred octahedral cations (Na1 and Na2, respectively); distortion of the four- and six-member tetrahedral rings of the double silicate layer. The dehydration process mainly involves the oxygen at the O11w site which has a different local environment with respect to the oxygen at the O12w site. At T > 600°C, the complete dehydration is accompanied by deprotonation of the OH groups substituting for the F atoms and by the collapse of the structure when the CO2 is released. The adopted approach allowed definition of the temperature thresholds at which modifications occur in the fluorcarletonite crystal structure when subjected to controlled heating conditions. Our findings contribute to assessment of stability, reactivity and, more generally, the thermal behaviour of sheet silicates with fluorcarletonite-like topology.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: G. Diego Gatta

References

Arletti, R., Fantini, R., Giacobbe, C., Gieré, R., Vezzalini, G., Vigliaturo, R. and Quartieri, S. (2018) High-temperature behavior of natural ferrierite: In-situ synchrotron X-ray powder diffraction study. American Mineralogist, 103, 17411748.CrossRefGoogle Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Bogdanov, A., Kaneva, E. and Shendrik, R. (2021) New insights into the crystal chemistry of elpidite, Na2Zr[Si6O15]⋅3H2O and (Na1+yCax1−x−y)Σ=2Zr[Si6O15]⋅(3-x)H2O, and ab initio modeling of IR spectra. Materials, 14, 2160.CrossRefGoogle Scholar
Borovikov, A.A., Vladykin, N.V., Tretiakova, I.G. and Dokuchits, E.Yu (2018) Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia). Ore Geology Reviews, 95, 10661075.CrossRefGoogle Scholar
Bray, H.J., Redfern, S.A.T. and Clark, S.M. (1998) The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study. Mineralogical Magazine, 62, 647656.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker, (2009) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker, (2010) APEX2 v.2010.7-0. Bruker AXS Inc., Madison, Wisconsin, U.S.A.Google Scholar
Chao, G.Y. (1971) Carletonite, KNa4Ca4Si8O18(CO3)4(F,OH)⋅H2O, a new mineral from Mount St. Hilaire, Quebec. American Mineralogist, 56, 18551866.Google Scholar
Chao, G.Y. (1972) The crystal structure of carletonite, KNa4Ca4Si8O8(CO3)4(F,OH)⋅H2O, a double-sheet silicate. American Mineralogist, 57, 765778.Google Scholar
Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.-M., Bieder, J., Bokhanchuk, A., Bousquet, E., Bruneval, F., Caliste, D., Côté, M., Dahm, F., Da Pieve, F., Delaveau, M., Di Gennaro, M., Dorado, B., Espejo, C., Geneste, G., Genovese, L., Gerossier, A., Giantomassi, M., Gillet, Y., Hamann, D.R., He, L., Jomard, G., Laflamme Janssen, J., Le Roux, S., Levitt, A., Lherbier, A., Liu, F., Lukačević, I., Martin, A., Martins, C., Oliveira, M.J.T., Poncé, S., Pouillon, Y., Rangel, T., Rignanese, G.-M., Romero, A.H., Rousseau, B., Rubel, O., Shukri, A.A., Stankovski, M., Torrent, M., Van Setten, M.J., Van Troeye, B., Verstraete, M.J., Waroquiers, D., Wiktor, J., Xu, B., Zhou, A. and Zwanziger, J.W. (2016) Recent developments in the ABINIT software package. Computer Physics Communications, 205, 106131.CrossRefGoogle Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183206.CrossRefGoogle Scholar
Hawthorne, F.C., Uvarova, Y.A. and Sokolova, E. (2019) A structure hierarchy for silicate minerals: sheet silicates. Mineralogical Magazine, 83, 355.CrossRefGoogle Scholar
Ivanov, A.V., Vladykin, N.V., Demonterova, E.I., Gorovoy, V.A. and Dokuchits, E.Y. (2018) 40Ar/ 39Ar geochronology of the Malyy (Little) Murun massif, Aldan shield of the Siberian craton: A simple story for an intricate igneous complex. Minerals, 8, 602.CrossRefGoogle Scholar
Kaneva, E. and Shendrik, R. (2022) Thermal behavior of natural stellerite: high-temperature X-ray powder diffraction and IR spectroscopy study. Analytical Sciences, 38, 15231532.CrossRefGoogle Scholar
Kaneva, E.V., Radomskaya, T.A., Suvorova, L.F. and Mitichkin, M.A. (2019) Fluorcarletonite, IMA 2019-038. CNMNC Newsletter No. 51. Mineralogical Magazine, 83, 757761. doi:10.1180/mgm.2019.58.Google Scholar
Kaneva, E., Radomskaya, T., Suvorova, L., Sterkhova, I. and Mitichkin, M. (2020a) Crystal chemistry of fluorcarletonite, a new mineral from the Murun alkaline complex (Russia). European Journal of Mineralogy, 32, 137146.CrossRefGoogle Scholar
Kaneva, E., Bogdanov, A. and Shendrik, R. (2020b) Structural and vibrational properties of agrellite. Scientific Reports, 10, 15569.CrossRefGoogle ScholarPubMed
Kaneva, E., Radomskaya, T. and Shendrik, R. (2022) Fluorcarletonite – a new blue gem material. Journal of Gemmology, 38, 342351.CrossRefGoogle Scholar
Kaneva, E., Bogdanov, A., Radomskaya, T., Belozerova, O. and Shendrik, R. (2023) Crystal-chemical characterisation and spectroscopy of fluorcarletonite and carletonite. Mineralogical Magazine, 87, 356368.CrossRefGoogle Scholar
Kasay, GM. (2018) Geology, Geochemistry and Economic Potential of the Bingo Carbonatite and its Associated Laterites in Beni, North Kivu, Democratic Republic of Congo (DRC). PhD dissertation, University of Nairobi, Kenya.Google Scholar
Kasay, G.M., Bolarinwa, A.T., Aromolaran, O.K., Nzolang, C. and Mambo, V.S. (2021) A review of the geological settings, ages and economic potentials of carbonatites in the Democratic Republic of Congo. Applied Earth Science, 130, 143160.CrossRefGoogle Scholar
Kresse, G. and Hafner, J. (1993) Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558561.CrossRefGoogle ScholarPubMed
Lacalamita, M., Mesto, E., Kaneva, E., Shendrik, R., Radomskaya, T. and Schingaro, E. (2023) High temperature behavior of fedorite, Na2.5(Ca4.5Na2.5)[Si16O38]F2⋅2.8H2O, from the Murun Alkaline Complex, Russia. Mineralogical Magazine, 87, 542553.CrossRefGoogle Scholar
McDonald, A. and Chao, G.Y. (2009) Lalondeite, a new hydrated Na–Ca fluorosilicate species from Mont Saint-Hilaire Quebec: description and crystal structure. The Canadian Mineralogist, 47, 181191.CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406.CrossRefGoogle ScholarPubMed
Post, J.E., Bish, D.L. and Heaney, P.J. (2015) Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 9197.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Togo, A. and Tanaka, I. (2015) First principles phonon calculations in materials science. Scripta Materialia, 108, 15.CrossRefGoogle Scholar
Vladykin, N.V. (2009) Potassium alkaline lamproite-carbonatite complexes: Petrology, genesis, and ore reserves. Russian Geology Geophysics, 50, 11191128.CrossRefGoogle Scholar
Vladykin, N.V., Borokovikov, A.A., Dokuchits, E.Yu. and Thomas, V.G. (2018) Genesis of charoite rocks in the Murun massif, Aldan Shield, Russia. Geochemistry International, 56, 11351147.CrossRefGoogle Scholar
Zema, M., Ventruti, G., Lacalamita, M. and Scordari, F. (2010) Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions. American Mineralogist, 95, 14581466.CrossRefGoogle Scholar
Zema, M., Ventruti, G., Tarantino, S. and Micelli, C. (2022) A new thermal and atmospheric conditioning device for in situ single-crystal diffraction is up and running. Pp. S1821 in: Book of Abstract of the Congress on Geosciences for a Sustainable Future. Società Geologica Italiana e Società Italiana di Mineralogia e Petrologia, Torino, Italy.Google Scholar
Supplementary material: File

Mesto et al. supplementary material 1

Mesto et al. supplementary material
Download Mesto et al. supplementary material 1(File)
File 3.6 MB
Supplementary material: File

Mesto et al. supplementary material 2

Mesto et al. supplementary material
Download Mesto et al. supplementary material 2(File)
File 37.2 MB