Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T02:45:13.233Z Has data issue: false hasContentIssue false

Graftonite-(Mn), ideally M1MnM2,M3Fe2(PO4)2, and graftonite-(Ca), ideally M1CaM2,M3Fe2(PO4)2, two new minerals of the graftonite group from Poland

Published online by Cambridge University Press:  15 May 2018

Adam Pieczka*
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, 30-059 Kraków, Mickiewicza 30, Poland
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Neil Ball
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Yassir Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Department of Applied Physics and Astronomy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
Bożena Gołębiowska
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, 30-059 Kraków, Mickiewicza 30, Poland
Adam Włodek
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, 30-059 Kraków, Mickiewicza 30, Poland
Jan Żukrowski
Affiliation:
AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, 30-059 Kraków, Mickiewicza 30, Poland
*

Abstract

Two new minerals of the graftonite group, graftonite-(Mn), ideally M(1)MnM(2),M(3)Fe2(PO4)2, and graftonite-(Ca), ideally M(1)CaM(2),M(3)Fe2(PO4)2, were discovered in phosphate nodules of two beryl–columbite–phosphate pegmatites at Lutomia and Michałkowa, respectively, in the Góry Sowie Block, Lower Silesia, southwest Poland. Graftonite-(Mn) is pinkish brown, whereas graftonite-(Ca) shows more brownish colouration. Both minerals have a vitreous lustre, a good cleavage observed along (010) and irregular fracture; both are transparent and neither of them is fluorescent. They are brittle and have a Mohs hardness of ~5. The minerals are non-pleochroic, colourless in all orientations, biaxial (+), with mean refractive indices α = 1.710(2) and 1.690(2), β = 1.713(2) and 1.692(2), and γ = 1.725(2) and 1.710(5), respectively. With complete order of Ca at the M(1) site, the formulae of the holotype crystals are M(1)(Mn0.70Ca0.30)M(2),M(3)(Fe1.34Mn0.60Mg0.06Zn0.01)Σ3(PO4)2 for graftonite-(Mn) and M(1)(Ca0.98Mn0.02)M(2),M(3)(Fe1.38Mn0.56Mg0.05)Σ3(PO4)2 for graftonite-(Ca). Both crystal chemistry and crystal-structure refinement (R1 = 2.34 and 1.63%, respectively) indicate that the M(1) site is occupied dominantly by Mn in graftonite-(Mn) and by Ca in graftonite-(Ca), and the M(2) and M(3) sites are occupied by Fe2+ and Mn2+, with Fe2+ dominant over Mn2+ at the aggregate M(2) + M(3) sites. Graftonite-(Mn) and graftonite-(Ca) are isostructural with graftonite, M(1)FeM(2),M(3)Fe2(PO4)2 (monoclinic system; space-group symmetry P21/c), with the unit-cell parameters a = 8.811(2) Å, b = 11.494(2) Å, c = 6.138(1) Å, β = 99.23(3)° and V = 613.5(4) Å3, and a = 8.792(2) Å, b = 11.743(2) Å, c = 6.169(1) Å, β = 99.35(3)° and V = 628.5(1) Å3, respectively. The densities calculated on the basis of molar weights and unit-cell volumes are 3.793 g/cm3 for graftonite-(Mn) and 3.592 g/cm3 for graftonite-(Ca). The eight strongest lines in powder X-ray diffraction patterns on the basis of single-crystal data are, respectively [d, Å, I (hkl)]: 2.874, 100, (230 + 040); 2.858, 79, (221); 3.506, 73, (130); 2.717, 79, ($\bar{3}$11); 2.952, 55, (131); 2.916, 53, ($\bar{1}$12); 2.899, 44, (300); 3.016, 35, ($\bar{1}$02); and 3.654, 100, (130); 2.979, 85, (221); 3.014, 77, (230); 3.042, 76, (040 + $\bar{1}$12); 2.834, 68, ($\bar{3}$11); 3.097, 57, (131); 3.133, 56, ($\bar{1}$02); 2.542, 30, (311). Both minerals are common primary phosphates in phosphate nodules, occurring as lamellar intergrowths with sarcopside ± triphylite/lithiophilite, products of exsolution from a (Li,Ca)-rich graftonite-like parent phase crystallized at high temperature from P-bearing hydrosaline melts.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Giancarlo Della Ventura

References

Aftalion, M. and Bowes, D.R. (2002) U–Pb zircon isotopic evidence for Mid-Devonian migmatite formation in the Góry Sowie domain of the Bohemian Massif, Sudeten Mountains, SW Poland. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 182192.Google Scholar
Bild, R.W. (1974) New occurrences of phosphates in iron meteorites. Contributions to Mineralogy and Petrology, 45, 9198.Google Scholar
Bröcker, M., Żelaźniewicz, A. and Enders, M. (1998) Rb–Sr and U–Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid–Late Devonian metamorphism. Journal of the Geological Society, London, 155, 10251036.Google Scholar
Brooks, J.H. and Shipway, C.H. (1960) Mica Creek pegmatites, Mount Isa, North-western Queensland. Australian Queensland Goverment Mining Journal, 61, 511522.Google Scholar
Brueckner, H.K., Blusztajn, J. and Bakun-Czubarow, N. (1996) Trace element and Sm–Nd “age” zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology, 14, 6173.Google Scholar
Calvo, C. (1968) The crystal structure of graftonite. American Mineralogist, 53, 742750.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 20052026.Google Scholar
Černy, P., Selway, J.B., Ercit, T.S., Breaks, F.W., Anderson, A.J. and Anderson, S.D. (1998) Graftonite-beusite in granitic pegmatites of the Superior Province: A study in contrasts. Canadian Mineralogist, 36, 367376.Google Scholar
Chen, M. and Xie, X. (1996) Na behaviour in shock-induced melt phase of the Yanzhuang (H6) chondrite. European Journal of Mineralogy, 8, 325333.Google Scholar
Floss, C. (1999) Fe,Mg,Mn-bearing phosphates in the GRA 95209 meteorite: Occurrences and mineral chemistry. American Mineralogist, 84, 13541359.Google Scholar
Fransolet, A.M. (1977) Intercroissances et inclusions dans les associations graftonite-sarcopside-triphylite. Bulletin de la Societé Française de Minéralogie et de Cristallographie, 100, 198207.Google Scholar
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosenwieg, A. (1997) Dana's New Mineralogy, Eighth Edition. Wiley and Sons, New York.Google Scholar
Gordon, S.M., Schneider, D.A., Manecki, M. and Holm, D.K. (2005) Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudetes Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London, 162, 841855.Google Scholar
Grochowina, A. (2016) Mineralogical studies of the Michałkowa pegmatite. Doctorate thesis, AGH University of Science and Technology, Cracow, Poland [in Polish].Google Scholar
Guastoni, A., Nestola, F., Mazzoleni, G. and Vignola, P. (2007) Mn-rich graftonite, ferrisicklerite, staněkite and Mn-rich vivianite in a granitic pegmatite at Soè Valley, central Alps, Italy. Mineralogical Magazine, 71, 579585.Google Scholar
Hawthorne, F.C. and Pieczka, A. (2018) Classification of the minerals of the graftonite group. Mineralogical Magazine, 82, 13011306.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Wise, M.A., Černý, P., Abdu, Y.A., Ball, N., Pieczka, A. and Włodek, A. (2018) Beusite-(Ca), ideally CaMn22+(PO4)2, a new graftonite-group mineral from the Yellowknife pegmatite field, Northwest Territories, Canada: description and crystal structure. Mineralogical Magazine, 82, 13231332.Google Scholar
Keller, P., Fontan, F., Velasco Roldan, F., Melgarejo, J.C. and Draper, I. (1977) Stanĕkite, a new phosphate mineral in pegmatites at Karibib (Namibia) and French Pyrénées (France). European Journal of Mineralogy, 9, 475482.Google Scholar
Kryza, R. (1981) Migmatization in gneisses of the northern part of the Sowie Góry, Sudetes. Geologia Sudetica, 16, 791 [in Polish, English summary].Google Scholar
Kryza, R. and Fanning, C.M. (2007) Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT–HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 20, 159176.Google Scholar
Łodziński, M. and Sitarz, M. (2009) Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Gory Mts., SW Poland. Journal of Molecular Structure, 924, 442447.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T. (2006) The Variscan Orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Novák, M. (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical and regional classification and geological significance. Acta Museum Moraviae, Scientiae Geologicae, 90, 375 [in Czech, English summary].Google Scholar
O'Brien, P.J., Kröner, A., Jaeckel, P., Hegner, E., Żelaźniewicz, A. and Kryza, R. (1997) Petrological and isotope studies on Palaeozoic high-pressure granulites. Góry Sowie Mts, Polish Sudetes. Journal of Petrology, 38, 433456.Google Scholar
Olsen, E. and Fredriksson, K. (1966) Phosphates in iron and pallasite meteorites: Geochimica et Cosmochimica Acta, 30, 459470.Google Scholar
Olsen, E.J., Kracher, A., Davis, A.M., Steele, I.M., Hutcheon, I.D. and Bunch, T.E. (1999) The phosphates of IIIAB iron meteorites. Meteoritics & Planetary Science, 34, 285300.Google Scholar
Penfield, S.L. (1900) On graftonite, a new mineral from Grafton, New Hampshire and its intergrowth with triphylite. American Journal of Science, 159, 2032.Google Scholar
Pieczka, A., Gołębiowska, B. and Skowroński, A. (2003) Ferrisicklerite and other phosphate minerals from the Lutomia pegmatite (SW Poland, Lover Silesia, Góry Sowie Mts). International Symposium on Light Elements in Rock-forming Minerals. Nové Město na Moravě, Czech Republic, June 20 to 25. Book of abstracts, pp. 63–64.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Nejbert, K., Łodziński, M., Ilnicki, S., Turniak, K., Banach, M., Hołub, W., Michałowski, P. and Różniak, R. (2013) (Fe,Mn)–(Ti,Sn)–(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. Journal of Geosciences, 58, 91112.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Ilnicki, S., Nejbert, K. and Turniak, K. (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. Canadian Mineralogist, 52, 303319.Google Scholar
Pieczka, A., Hawthorne, F.C., Cooper, M.A., Szełęg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K. and Ilnicki, S. (2015 a) Pilawite-(Y), Ca2(Y,Yb)2[Al4(SiO4)4O2(OH)2], a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association. Mineralogical Magazine, 79, 11431157.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J. and Nejbert, K. (2015 b): Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic Pegmatites. Książ, Poland, June 17–19, 2015. Fieldtrip Guidebook, C 73–103.Google Scholar
Pieczka, A., Włodek, A., Gołębiowska, B., Szełęg, E., Szuszkiewicz, A., Ilnicki, S., Nejbert, K. and Turniak, K. (2015 c) Phosphate-bearing pegmatites in the Góry Sowie Block and adjacent areas, Sudetes, SW Poland. 7th International Symposium on Granitic Pegmatites, PEG 2015. Książ, Poland. Book of Abstracts, pp. 77–78.Google Scholar
Pieczka, A., Szełęg, E., Szuszkiewicz, A., Gołębiowska, B., Zelek, S., Ilnicki, S., Nejbert, K. and Turniak, K. (2016) Cs-bearing beryl evolving to pezzottaite from the Julianna pegmatitic system, SW Poland. Canadian Mineralogist, 54, 115124.Google Scholar
Pieczka, A., Hawthorne, F.C., Gołębiowska, B., Włodek, A. and Grochowina, A. (2017 a) Maneckiite, ideally NaCa2Fe22+(Fe3+Mg)Mn2(PO4)6(H2O)2, a new phosphate mineral of the wicksite supergroup from the Michałkowa pegmatite, Góry Sowie block, southwestern Poland. Mineralogical Magazine, 81, 723736.Google Scholar
Pieczka, A., Hawthorne, F.C., Ma, C., Rossman, G.R., Szełęg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S.S., Buffat, P. and Rutkowski, B. (2017 b) Żabińskiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, a new mineral of the titanite group from the Piława Górna pegmatite, the Góry Sowie Block, southwestern Poland. Mineralogical Magazine, 81, 591610.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis, (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Sharygin, V.V., Karmanov, N.S. and Podgornykh, N.M. (2016) Fe-phosphate globules in impact metal-troilite associations of Chelyabinsk meteorite. 79 th Annual Meeting of the Meteoritical Society. Meteoritics & Planetary Science, 51, S1, https://doi.org/10.1111/maps.12698Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Simmons, W.B. and Webber, K.L. (2008) Pegmatite genesis: state of the art. European Journal of Mineralogy, 20, 421438.Google Scholar
Škoda, R., Staněk, J. and Čopjaková, R. (2007) Mineral associations of phosphate nodules from a granitic pegmatite at Cyrilov near Velké Meziříčí, Moldanubikum; Part 1: Primary and exsolved phases. Acta Museum Moraviae, Scientiae Geologicae, 92, 5974 [in Czech].Google Scholar
Smeds, S.A., Uher, P., Černý, P., Wise, M.A., Gustafsson, L. and Penner, P. (1998) Graftonite – beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist, 36, 377394.Google Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist, 45, 9831055.Google Scholar
Stalder, M. and Rozendaal, A. (2002) Graftonite in phosphatic iron formations associated with the mid-Proterozoic Gamsberg Zn-Pb deposit, Namaqua Province, South Africa. Mineralogical Magazine, 66, 915927.Google Scholar
Steele, I.M., Olsen, E., Pluth, J. and Davis, A.M. (1991) Occurrence and crystal structure of Ca-free beusite in the El Sampal IIIA iron meteorite. American Mineralogist, 76, 19851989.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Szełęg, E., Zuzens, B., Hawthorne, F.C., Pieczka, A., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S.S., Friis, H., Makovicky, E., Weller, M.T. and Lemée-Cailleau, M.-H. (2017) Bohseite, ideally Ca4Be4Si9O24(OH)4, from the Piława Górna quarry, the Góry Sowie Block, SW Poland. Mineralogical Magazine, 81, 3546.Google Scholar
Szuszkiewicz, A., Szełęg, E., Pieczka, A., Ilnicki, S., Nejbert, K., Turniak, K., Banach, M., Łodziński, M., Różniak, R. and Michałowski, P. (2013) The Julianna pegmatite vein system at the Piława Górna mine, Góry Sowie Block, SW Poland – preliminary data on geology and descriptive mineralogy. Geological Quarterly, 57, 467484.Google Scholar
Szuszkiewicz, A., Pieczka, A., Szełęg, E., Turniak, K., Ilnicki, S. and Nejbert, K. (2016) The euxenite-group minerals and products of their alteration in the hybrid Julianna granitic pegmatite, Piława Górna, Sudetes, southwestern Poland. Canadian Mineralogist, 54, 979–898.Google Scholar
Tait, K.T., Hawthorne, F.C. and Wise, M.A. (2013) The crystal structure of the graftonite-beusite minerals. Canadian Mineralogist, 51, 653662.Google Scholar
Timmermann, H., Parrish, R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland: evidence for a single-cycle Variscan orogeny. Journal of the Geological Society, London, 157, 265268.Google Scholar
Turniak, K., Pieczka, A., Kennedy, A.K., Szełęg, E., Ilnicki, S., Nejbert, K. and Szuszkiewicz, A. (2015) Crystallisation age of the Julianna pegmatite system (Góry Sowie Block, NE margin of the Bohemian massif): evidence from U-Th-Pb SHRIMP monazite and CHIME uraninite studies. 7th International Symposium on Granitic Pegmatites, PEG 2015. Książ, Poland. Book of Abstracts, pp. 111–112.Google Scholar
van Breemen, O., Bowes, D.R., Aftalion, M. and Żelaźniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, SW Poland: evidence from Rb-Sr and U-Pb isotopic studies. Annales Socieatits Geologorum Poloniae, 58, 319.Google Scholar
Vignola, P., Diella, V., Oppizzi, P., Tiepolo, M. and Weiss, S. (2008) Phosphate assemblages from the Brissago granitic pegmatite, Western Southern Alps, Switzerland. Canadian Mineralogist, 46, 635650.Google Scholar
Vignola, P., Diella, V., Ferrari, E.S. and Fransolet, A.M. (2011 a) Complex mechanisms of alteration in a graftonite + sarcopside + triphylite association from the Luna pegmatite, Piona, Lecco Province, Italy. Canadian Mineralogist, 49, 765776.Google Scholar
Vignola, P., Fransolet, A.M., Guastoni, A. and Appiani, R. (2011 b) Le pegmatiti di Piona. Recenti studi sui filoni Malpensata, Luna e Sommafiume. Rivista Mineralogica Italiana, 35, 3038.Google Scholar
Websky, M. (1868) Über Sarkopsid und Kochelit, zwei neue Minerale aus Schlesien. Zeitschrift der Deutschen Geologischen Gesellschaft, 20, 245257.Google Scholar
Wise, M.A., Hawthorne, F.C. and Černý, P. (1990) Crystal structure of a Ca-rich beusite from the Yellowknife pegmatite field, North West Territories. Canadian Mineralogist, 28, 141146.Google Scholar
Włodek, A. and Pieczka, A. (2017) Mineral chemistry of the zigrasite–malhmoodite series from the granitic pegmatite at Lutomia (Góry Sowie block, SW Poland). PEG2017, 8th International Symposium on Granitic Pegmatites, NGF. Abstracts and Proceedings, 2, 181182.Google Scholar
Włodek, A., Grochowina, A., Gołębiowska, B. and Pieczka, A. (2015) A phosphate-bearing pegmatite from Lutomia and its relationships to other pegmatites of the Góry Sowie Block, southwestern Poland. Journal of Geosciences, 60, 4572.Google Scholar
Żelaźniewicz, A. (1990) Deformation and metamorphism in the Góry Sowie gneiss complex, Sudetes, SW Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179, 129157.Google Scholar
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material 1

Download Pieczka et al. supplementary material(File)
File 143.3 KB