Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:10:31.575Z Has data issue: false hasContentIssue false

Genesis of hydrothermal K-feldspar (adularia) in an active geothermal environment at Wairakei, New Zealand

Published online by Cambridge University Press:  05 July 2018

A. Steiner*
Affiliation:
New Zealand Geological Survey, Lower Hutt

Summary

Hydrothermal almost pure potassium feldspar (adularia) forms incrustations on fissured wall rocks in an active geothermal environment. Measured max. temperature, 265 °C, and concentration of K+ and Na+ cations in the geothermal fluid require K-feldspar and Na-feldspar to be deposited under equilibrium conditions. On fissure walls only K-feldspar is precipitated, whereas andesine phenocrysts of host rocks are replaced by both K-feldspar and Na-feldspar, and groundmass of host rock is replaced by K-feldspar.

Optical data indicate that K-feldspar forming incrustations is partly monoclinic, partly triclinic. The triclinic material displays polysynthetic and ‘microcline’-like twinning, though X-ray diffractograms indicate only monoclinic structure. A primary origin for the triclinic adularia is postulated. Wairakei hydrothermal K-feldspar, max. 0·5 Myr old, is compared with Arkansas adularia 287 or 214 Myr old, also containing both monoclinic and triclinic material. The comparison suggests that, after crystallization, the structural state of adularia changes little, if at all, during geological time.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansilewski, (J.), 1958. Bull. Acad. Polon. Sci., Sér. sci. Chim., géol. géogr. 6, 275-82.Google Scholar
Bambauer, (H. U.) and Laves, (F.), 1960. Schweiz. Min. Petr. Mitt. 40, 177-205,Google Scholar
Bass, (M. N.) and Ferrara, (G.), 1969, Amer. Journ. Sci. 267, 491-8,CrossRefGoogle Scholar
Borg, (I. Y.) and Smith, (D. K.), 1969. Amer. Min. 54, 163-81.Google Scholar
Bower, (N. L.) and Tuttle, (O. F.), 1950. Journ. Geol. 58, 489-511 [M.A, 11-325].Google Scholar
Donnav (G.), and Donnay, (J. H. D.), 1952. Amer. Journ. Sci., Bowen vol. 115-32 [M.A. 12-96].Google Scholar
Ellis, (A. J.), 1961. U.N. Conf. New Sources of Energy, II A.I, 126.Google Scholar
Goldsmith, (J. R.) and Laves, (F.), 1954. Geochimica Acta, 5, 1-19.CrossRefGoogle Scholar
Goldsmith, (J. R.) and Laves, (F.), 1954. Ibid. 6, 100-18.CrossRefGoogle Scholar
Gubser, (R.) and Laves, (F.), 1967. Schweiz Min. Petr. Mitt. 47, 177-88.Google Scholar
Hafner, (S.) and Laves, (F.), 1957. Zeits. Krist. 109, 204-25.CrossRefGoogle Scholar
Hemley, (J. J.) and Jones, (W. R.), 1964. Econ. Geol. 59, 538-69.10.2113/gsecongeo.59.4.538CrossRefGoogle Scholar
Laves, (F.), 1952. Journ. Geol. 60, 436-50.CrossRefGoogle Scholar
Lyon, (R. J. P.), 1963. NASA-TN, D-1871.Google Scholar
MacKenzie, (W. S.), 1952. Amer. Journ. Sci. Bowen vol. 319-42 [M.A. 12-135].Google Scholar
Mahon, (W. A. J.) and Glover, (R. B.), 1965. 8th Comm. Min. Metal. Congr. Google Scholar
Nowakowski, (A.), 1959. Bull. Akad. Polon. Sci., Sér. sci. Chim., géoL géogr. 7, 751-7.Google Scholar
Steiner, (A.), 1953. Econ. Geol. 48, 1-13 [M.A. 14-18].CrossRefGoogle Scholar
Steiner, (A.), 1955. Min. Mag. 30, 691-8 [M.A. 13-27].Google Scholar
Steiner, (A.), 1968. Clays and Clay Min. 16, 193-213.CrossRefGoogle Scholar
Steiner, (A.) and Rafter, (T. A.), 1966. Econ. Geol. 61, 1115-29.CrossRefGoogle Scholar