Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T19:40:42.091Z Has data issue: false hasContentIssue false

Genesis of chrysoberyl in the pegmatites of southern Kerala, India

Published online by Cambridge University Press:  05 July 2018

K. Soman
Affiliation:
Centre for Earth Science Studies, Trivandrum-695010, India
N. G. K. Nair
Affiliation:
Centre for Earth Science Studies, Trivandrum-695010, India

Abstract

In southern Kerala, India, chrysoberyl occurs in granitic pegmatites in association with quartz in alkali feldspar and is thought to crystallize earlier than beryl and sillimanite. The pegmatites are thought to have derived from the residual melts of granitic liquids formed by partial melting of the khondalites. In the absence of pyrometasomatic, desilication or aluminium-contamination processes, the genesis of chrysoberyl is explained by the CO2 activity in residual melts. This model is at variance with the known concepts and may also explain the genesis of chrysoberyl in Sri Lanka where it is still controversial.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arem, J. E. (1977) Color Encyclopedia of gemstones. Van Nostrand Reinhold Co., New York, 147 pp.Google Scholar
Beus, A. A. (1960) Geochemistry of beryllium and genetic types of deposits. USSR Academy of Sciences publ., Moscow, 331 pp. (in Russian).Google Scholar
Burr, D. M. (1982) Mineral. Assoc. Can. Short Course Handbook, 8, 135-48.Google Scholar
Eggler, D. H. (1978) Am. J. Sci. 278, 305-43.CrossRefGoogle Scholar
Fersman, A. E. (1940) Pegmatites. USSR Academy of Sciences publ., Moscow-Leningrad, 3rd edn., 1, 712 pp. (in Russian).Google Scholar
Franz, G., and Morteani, G. (1981) Neues Jahrb. Mineral., Abh. 140, 273-99.Google Scholar
Franz, G. and Morteani, G. (1984) J. Petrol. 25, 2752.CrossRefGoogle Scholar
Ginzburg, A. I., Timofeev, I. N., and Fel'dman, L. G. (1979) Geology of granitic pegmatites, Nedra, Moscow, 296 pp. (in Russian).Google Scholar
Govorov, L. N., Mateeva, A. A., Blagodareva, N. S., Martina, R. I., and Tolok, K. P. (1963) Soobschch Dalnevost. Filiala Sibirsk. Otd. Akad. Nauk SSSR 19, 39-45.(in Russian).Google Scholar
Heinrich, E. W., and Buchi, S. H. (1969) Indian Mineral. 10, 17.Google Scholar
Khetchikov, L. N., Dorogin, B. A., and Samoylovich, L. A. (1968) Geologia Rudnikh mestorozhgeniye, 3, 87-97.(in Russian).Google Scholar
Kuhlmann, H. (1983) Emissionsspektralanalyse yon naturlischen und synthetischen Korunden, Beryllen und Chrysoberyllen. Diss. Univ. Heidelberg (German).Google Scholar
Mehnert, K. R. (1971) Migmatites and the origin of granitic rocks. Elsevier, Amsterdam, 405 pp.Google Scholar
Okrusch, M. (1971) Z. Dt. Gemmol. Ges. 20, 114-24.Google Scholar
Potter, R. W. (1977) J. Res. U.S. Geol. Surv. 5, 603-7.Google Scholar
Rollinson, H. R. (1983) J. Geol. Soc. 140, 958.Google Scholar
Solodov, N. A. (1962) Internal Structure and geochemistry of rare-metal granitic pegmatites. USSR Academy of Sciences Publ., Moscow, 235 pp. (in Russian).Google Scholar
Soman, K. (1984) Geology and Mineral Resources of Trivandrum district, Kerala state, India. Unpubl. Ph.D. thesis, Friendship Univ., Moscow (in Russian).Google Scholar
Soman, K. and Nair, N. G. K. (1983) Trans. Instn. Min. Metall. (Sect. B: Applied earth sci.), 92, B 154-9.Google Scholar
Soman, K. and Nair, N. G. K. (1985) J. Gemmol. (in press).Google Scholar
Soman, K. and Nair, N. G. K., Golubyev, V. N., and Arakelyan, M. M. (1982) J. Geol. Soc. India, 23, 458-62.Google Scholar
Wyllie, P. J. (1969) Indian Mineral. 10, 116-39.Google Scholar
Wyllie, P. J. and Huang, W. L. (1976) Contrib. Mineral. Petrol. 54, 79-107.CrossRefGoogle Scholar