Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:32:57.874Z Has data issue: false hasContentIssue false

Gachingite, Au(Te1–xSex) 0.2 ≈ x ≤ 0.5, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  24 January 2022

Nadhezda D. Tolstykh
Affiliation:
VS Sobolev Institute of Geology and Mineralogy of SB RAS, prosp. Akademika Koptyuga, 3, 630090, Novosibirsk, Russia
Marek Tuhý*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague
Anna Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, 128 21 Prague 8, Czech Republic
Filip Košek
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague
*
*Author for correspondence: Marek Tuhý, Email: [email protected]

Abstract

Gachingite, Au(Te1–xSex), 0.2 ≈ x ≤ 0.5, is a new mineral discovered in the Gaching ore occurrence of the Maletoyvayam epithermal deposit, Kamchatka, Russia. Gachingite forms individual droplet-like grains of sizes from 2 to 10 μm included in native gold (Au–Ag), associated with calaverite, maletoyvayamite, watanabeite and Au–Sb oxides. The aggregates do not exceed 100 μm in diameter. In plane-polarised light, gachingite is grey with a bluish tint, has bireflectance (bluish-grey to deep grey), and strong anisotropy with rotation tints blue to dark blue to brown. Reflectance values for gachingite in air (Rmin, Rmax in %) are: 39.9, 40.3 at 470 nm; 41.6, 43.3 at 546 nm; 42.0, 43.7 at 589 nm; and 43.0, 44.0 at 650 nm. Eighteen electron-microprobe analyses of gachingite gave an average composition: Au 62.40, Ag 0.57, Se 9.78, Te 27.33 and S 0.01, total 100.09 wt.%, corresponding to the formula (Au0.96Ag0.02)Σ0.98(Te0.65Se0.37)Σ1.02 based on 2 apfu, the simplified formula is Au(Te0.65Se0.35); the average analyses of its synthetic analogue is Au 65.7, Se 13.1 and Te 21.1, total 99.9 wt.%, corresponding to Au1.00(Te0.50Se0.50). The calculated density is 10.47 g/cm3. The mineral is orthorhombic, space group Cmce (#64) with a = 7.5379 Å, b = 5.7415 Å, c = 8.8985 Å, V = 385.12 Å3 and Z = 8. The crystal structure was solved and refined from the single-crystal X-ray-diffraction data of synthetic Au1.00(Te0.50Se0.50). The crystal structure of gachingite represents a unique structure type, containing linear [Au–Au–Au] chains running along the b-axis indicating strong metallic interaction in one direction. The structural identity of gachingite and its synthetic analogue Au1.00(Te0.50Se0.50) was confirmed by electron back-scatter diffraction and Raman spectroscopy. The formation of gachingite requires an abundant source of Au and Se and a high oxidising environment. Gachingite is related to the gold-bearing productive stage of ore mineralisation, which is stable at 250°C in log$f_{{\rm S}{\rm e}_ 2}$ range of −12.4 and −5.7. The mineral is named after its type locality.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Cranton, G.E. and Heyding, R.D. (1968) The gold/selenium system and some gold seleno-tellurides. Canadian Journal of Chemistry, 46, 26372640.10.1139/v68-433CrossRefGoogle Scholar
Geick, R., Steigmeier, E.F. and Auderset, H. (1972) Raman effect in selenium-tellurium mixed crystals. Physica Status Solidi B, 54, 623630.10.1002/pssb.2220540226CrossRefGoogle Scholar
Goryachev, N.A., Volkov, A.V., Sidorov, A.A., Gamyanin, G.N., Savva, N.Y. and Okrugin, V.M. (2010) Au-Ag-mineralization of volcanogenic belts of the northeast Asia. Lithosphere, 3, 3650 [In Russian].Google Scholar
HKL Technology (2004) Channel 5. HKL–Technology A/S, Hobro, DenmarkGoogle Scholar
Khanchuk, A.I. and Ivanov, V.V. (1999) Meso-Cenozoic geodynamic settings and gold mineralization of the Russian Far East. Russian Geology and Geophysics, 40, 16071617.Google Scholar
Lavrent'ev, Yu.G., Karmanov, N.S. and Usova, L.V. (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russian Geology and Geophysics, 8, 11541161.10.1016/j.rgg.2015.07.006CrossRefGoogle Scholar
Lyashenko, L.L. and Mikhaylova, G.N. (1972) Report on the results of exploration work within the Maletoyamyam sulfur ore cluster. Enyngvayamskaya PDP, 1970–1971, foundations [in Russian].Google Scholar
Melkomukov, B.H., Razumny, A.V., Litvinov, A.P. and Lopatin, W.B. (2010) The new highly promising gold objects of Koryakiya. Mining Bulletin of Kamchatka, 14, 7074 [In Russian].Google Scholar
Okrugin, V., Kokarev, S., Okrugina, A., Chubarov, V. and Shuvalov, R. (1994) An unusual example of the interaction of modern hydrothermal system with Au-Ag veins (Southern Kamchatka). Mineralogical Magazine, 58A, 669670 [Goldschmidt abstract].10.1180/minmag.1994.58A.2.84CrossRefGoogle Scholar
Okrugin, V.M., Shishkanova, K.O. and Yablokova, D.A. (2015) About the ores of the Amethystovoe deposits (Kamchatka). Mining Bulletin of Kamchatka, 3–4, 3334 [In Russian].Google Scholar
Okrugin, V., Shishkanova, K. and Philosophova, T. (2017) New data on ores from the Vilyuchinskoe Au-Ag polymetallic ore occurrence, South Kamchatka. Ore and Metals, 1, 4054 [In Russian].Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.10.1107/S0021889807029238CrossRefGoogle Scholar
Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie 229, 345352.10.1515/zkri-2014-1737CrossRefGoogle Scholar
Rabenau, A. and Schulz, H. (1976) The crystal structure of α-AuSe and β-AuSe. Journal of the Less-Common Metals 48, 89101.10.1016/0022-5088(76)90235-6CrossRefGoogle Scholar
Schutte, W.J. and de Boer, J.L. (1988) Valence fluctuations in the incommensurately modulated structure of calaverite AuTe2. Acta Crystallographica, B44, 486494.10.1107/S0108768188007001CrossRefGoogle Scholar
Shapovalova, M., Tolstykh, N. and Bobrova, O. (2019) Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf. Series: Earth and Environmental Science, 319, 012019.Google Scholar
Sidorov, E.G., Borovikov, A.A., Tolstykh, N.D., Bukhanova, D.S., Palyanova, G.A. and Chubarov, V.M. (2020) Gold mineralization at the Maletoyvayam deposit (Koryak Highland, Russia) and physicochemical conditions of its formation. Minerals, 10, 1093.10.3390/min10121093CrossRefGoogle Scholar
Straumanis, M.E. (1971), Neubestimmung der Gitterparameter, Dichten und thermischen Ausdehnungskoeffizienten von Silber und Gold, und Vollkommenheit der Struktur. Monatshefte fuer Chemie, 102, 13771386.10.1007/BF00917194CrossRefGoogle Scholar
Takahashi, R., Matsueda, H. and Okrugin, V.M. (2002) Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia. Resource Geology, 52, 359369.10.1111/j.1751-3928.2002.tb00146.xCrossRefGoogle Scholar
Takahashi, R., Matsueda, H., Okrugin, V.M. and Ono, S. (2007) Epithermal gold-silver mineralization of the Asachinskoe deposit in South Kamchatka, Russia. Resource Geology, 57, 354373.10.1111/j.1751-3928.2007.00034.xCrossRefGoogle Scholar
Tolstykh, N., Vymazalová, A., Petrova, E. and Stenin, N. (2017) The Gaching Au mineralization in the Maletoyvayam ore field, Kamchatka, Russia. Pp. 195–198 in: Materials Mineral Resources to Discover. Proceedings of the 14th Biennial SGA Meeting, 17–20 August 2017, Quebec City, Canada, Vol. 1.Google Scholar
Tolstykh, N., Vymazalová, A., Tuhý, M., and Shapovalova, M. (2018) Conditions of Au-Se-Te mineralization in the Gaching ore occurrence (Maletoyvayam ore field), Kamchatka, Russia. Mineralogical Magazine, 82, 649674.10.1180/mgm.2018.84CrossRefGoogle Scholar
Tolstykh, N., Palyanova, G., Bobrova, O. and Sidorov, E. (2019) Mustard gold of the Gaching ore occurrence (Maletoyvayam deposit, Kamchatka, Russia). Minerals, 9, 489.10.3390/min9080489CrossRefGoogle Scholar
Tolstykh, N.D., Tuhý, M., Vymazalová, A., Plášil, J., Laufek, F., Kasatkin, A.V., Nestola, F. and Bobrova, O.V. (2020) Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 84, 117123.10.1180/mgm.2019.81CrossRefGoogle Scholar
Tolstykh, N., Tuhý, M., Vymazalová, A., Plášil, J., Laufek, F., Košek, F. and Sidorov, E.G. (2021) Gachingite, IMA 2021-008. CNMNC Newsletter No. 62. Mineralogical Magazine, 85, 634638.Google Scholar
Tsukanov, N. (2015) Tectono-stratigraphic terranes of Kamchatka active margins: structure, composition and geodynamics. Pp. 97–103 in: Materials of the Annual conference “Volcanism and Related Processes”. Petropavlovsk-Kamchatsky, Kamchatka Krai, Russia [in Russian].Google Scholar
Tverjanovich, A., Cuisset, A., Fontanari, D. and Bychkov, E. (2018) Structure of Se–Te glasses by Raman spectroscopy and DFT modeling. Journal of the American Ceramic Society, 101, 51885197.10.1111/jace.15758CrossRefGoogle Scholar
Supplementary material: File

Tolstykh et al. supplementary material

Tolstykh et al. supplementary material

Download Tolstykh et al. supplementary material(File)
File 9.5 KB