Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T20:20:26.166Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. X. Titanium silicates: the crystal structure and crystal chemistry of nechelyustovite, a group III Ti-disilicate mineral

Published online by Cambridge University Press:  05 July 2018

F. Cámaraite*
Affiliation:
CNR — Istituto di Geoscienze e Georisorse, unita di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow 119017, Russia
*

Abstract

The crystal structure of nechelyustovite, ideally Na4Ba2Mn1.52.5Ti5Nb(Si2O7)4O4(OH)3F(H2O)6, a 5.447(1) Å, b 7.157(1) Å, c 47.259(9) Å, α 95.759(4)°, β 92.136(4)°, γ 89.978(4)°, V 1831.7(4) Å3, space group P, Z = 2, Dcalc. 3.041 g cm–3, from Lovozero alkaline massif, Kola Peninsula, Russia, has been solved and refined to R1 = 13.9% on the basis of 1745 unique reflections (Fo > 15σF). Electron microprobe analysis yielded the empirical formula (H20)6.01, Z = 2, calculated on the basis of 42 (O + F) a.p.f.u., H2O and OH are calculated from structure refinement (H2O = 6 p.f.u.; F + OH = 4 p.f.u.). The crystal structure of nechelyustovite is a combination of a TS (titanium silicate) block and an I (intermediate) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral). The TS block exhibits linkage and stereochemistry typical for Group III (Ti = 3 a.p.f.u.) of Ti-disilicate minerals: two H sheets connect to the O sheet such that two (Si2O7) groups link to the trans edges of a Ti octahedron of the O sheet. There are two distinct TS blocks of the same topology, TS1 and TS2, that differ in the cations of the O sheet, [(Na1.5Mn10.5)Ti] and [(Na2Mn0.50.5)Ti] (4 a.p.f.u.) respectively. The TS1 and TS2 blocks have two different H sheets, H1,2 and H3,4, where (Si2O7) groups link to [5]- and [6]-coordinated (Ti,Nb) polyhedra respectively. There are three peripheral sites, AP(1—3), occupied mainly by Ba (less Sr and K) at 96, 86 and 26% and one peripheral site AP(4) occupied by Na at 50%. There are two I blocks: the I1 block is a layer of Ba atoms; the I2 block consists of H2O groups and AP(3) atoms. TS blocks alternate with I blocks or link through hydrogen bonds (as in epistolite). There is a sequence of four TS blocks and three I blocks per the c cell parameter: TS2I1 — TS1I2 — TS1I1 — TS2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1—30 in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Cámaraite, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-III Ti-disilicate mineral. Mineralogical Magazine, 71, 593—610.Google Scholar
Cámaraite, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2008) From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, Group- IV minerals. Mineralogical Magazine, 72, 1207—1228.Google Scholar
Chernov, A.N., Ilyukhin, V.V., Maksimov, B.A. and Belov, N.V. (1971) Crystal structure of innelite, Na2Ba3(Ba,K,Mn)(Ca,Ba)Ti(TiO2)2(Si2O7)2(SO4)2. Soviet Physics Crystallography, 16, 65—69.Google Scholar
Drozdov, Yu.N., Batalieva, N.G., Voronkov, A.A. and Kuz’min, E.A. (1974) Crystal structure of Na11Nb2TiSi4P2O25F. Soviet Physics Doklady, 19, 258—259.Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, NanTi4+Nb2(Si2O7)2(PO4)2O3 (F,OH), a phosphatebearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 36, 1311 — 1320.Google Scholar
Ferraris, G. and Gula, A. (2005) Polysomatic aspects of microporous materials — heterophyllosilicates, paly-sepioles and rhodesite-related structures. Pp. 69—104 in: Micro and Mesoporous Mineral Phases (G. Ferraris and S Merlino, editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Ferraris, G., Pushcharovsky, D.Yu., Zubkova, N.V. and Pekov, I.V. (2001) The crystal structure of delindeite, Ba2﹛(Na,K, ☐ )3(Ti,Fe) [Ti2(O,OH)4Si4O14](H2O,OH)2﹜, a member of the mero-plesiotype bafertisite series. The Canadian Mineralogist, 39, 1307—1316.CrossRefGoogle Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Application of modularity to structure description and modeling. Pp. 227—279 in: Crystallography of Modular Materials. Oxford University Press, New York.Google Scholar
International Tables for X-ray Crystallography (1992) V.C. Dordrecht, Kluwer Academic Publishers, The Netherlands.Google Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, U.K.Google Scholar
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya. A. and Men’shikov, Yu. P. (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia. European Journal of Mineralogy, 15, 711—718.CrossRefGoogle Scholar
Nemeth, P. (2004) Characterization of new mineral phases belonging to the heterophyllosilicate series. Doctorate Dissertation, Dipartimento di Scienze Mineralogiche e Petrologiche, Universita di Torino, Italy.Google Scholar
Nemeth, P., Ferraris, G., Dodony, I., RadrnSczi, G. and Khomyakov, A.P. (2004) Models of the modular structures of two new heterophyllosilicates related to bornemanite and barytolamprophyllite. Acta Crystallographica A, 60, s196.CrossRefGoogle Scholar
Nemeth, P., Khomyakov, A.P., Ferraris, G. and Men’shikov, Yu.P. (2009) Nechelyustovite, a new heterophyllosilcate mineral, and new data on bykovaite: a comparative TEM study. European Journal ofMineralogy, 21, 251—260.Google Scholar
Peng, Z., Zhang, J. and Shu, J. (1984) The crystal structure of barytolamprophyllite and orthorhombic lamprophyllite. Kexure Tongbao, 29, 237—241.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high-barium analogue of lamprophyllite with a primitive unit cell. Doklady Chemistry, 368(4—6), 228—231.Google Scholar
Rastsvetaeva, R.K. and Dorfman, M.D. (1995) Crystal structure of Ba-lamprophyllite in the isomorphous lamprophyllite-barytolamprophyllite series. Crystallography Reports, 40, 951—954.Google Scholar
Rastsvetaeva, R.K., Sokolova, M.N. and Gusev, A.I. (1990) Refinement of the crystal structure of lamprophyllite. Mineralogicheskii Zhurnal, 12(5), 25—28. (in Russian).Google Scholar
Rastsvetaeva, R.K., Evsyunin, V.G. and Konev, A.A. (1995) Crystal structure of K-barytolamprophyllite. Crystallography Reports, 40, 472—474.Google Scholar
Saf’yanov, Y.N., Vasil’eva, N.O., Golovachev, V.P., Kuz’min, E.A. and Belov, N.V. (1983) Crystal structure of lamprophyllite. Soviet Physics Doklady, 28, 207—209.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751—767.Google Scholar
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (1998) SADABS User Guide, University of Gottingen, Germany.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. and Cámaraite, F. (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. The Canadian Mineralogist, 45, 1247—1261.CrossRefGoogle Scholar
Sokolova, E. and Cámaraite, F. (2008a) From structure topology to chemical composition. III. Titanium silicates: crystal chemistry of barytolamprophyllite. The Canadian Mineralogist, 46, 403—412.Google Scholar
Sokolova, E. and Cámaraite, F. (2008b) From structure topology to chemical composition. VIII. Titanium silicates: the crystal structure and crystal chemistry of mosandrite from type locality of Laven (Skadon), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogical Magazine, 72, 887—897.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11—14] trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadian Mineralogist, 39, 12751294.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797—806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008a) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadian Mineralogist, 46, 1469—1477.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2008b) From structure topology to chemical composition. V. Titanium silicates: the crystal chemistry of nacar- eniobsite-(Ce). The Canadian Mineralogist, 46, 14931502.Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 1527—1544.CrossRefGoogle Scholar
Sokolova, E., Cámaraite, F., Hawthorne, F.C. and Abdu, Y. (2009) From structure topology to chemical composition. VII. Titanium silicates: the crystal structure and crystal chemistry of jinshajiangite. European Journal of Mineralogy, 21, 871—883.CrossRefGoogle Scholar
Woodrow, P.J. (1964) Crystal structure of lamprophyllite. Nature, 204, 375.CrossRefGoogle Scholar
Supplementary material: File

Cámaraite and Sokolova supplementary material

Cif file

Download Cámaraite and Sokolova supplementary material(File)
File 56.4 KB
Supplementary material: File

Cámaraite and Sokolova supplementary material

Structure data file

Download Cámaraite and Sokolova supplementary material(File)
File 317.8 KB