Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:47:32.616Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, Group-IV minerals

Published online by Cambridge University Press:  05 July 2018

F. Cámara*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow 109017, Russia
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Y. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
*

Abstract

The crystal structures of lomonosovite, ideally Na10Ti4(Si2O7)2(PO4)2 O4, a = 5.4170(7) Å, b = 7.1190(9) Å, c = 14.487(2) Å, a = 99.957(3)°, β = 96.711(3)°, γ = 90.360(3)°, V= 546.28(4) Å3, Dcalc. = 3.175 g cm“3, and murmanite, ideally Na4Ti4(Si2O7)2O4(H2O)4, a = 5.3875(6) Å, b = 7.0579(7) Å, c = 12.176(1) Å, a = 93.511(2)°, 0 = 107.943(4)°, y = 90.093(2)°, V = 439.55(2) Å3, Dcalc. = 2.956 g.cm∼3, from the Lovozero alkaline massif, Kola Peninsula, Russia, have been refined in the space group P1̄ (Z = 1) to R values of 2.64 and 4.47%, respectively, using 4572 and 2222 observed |F°≥ 4σF| reflections collected with a single-crystal Bruker AXS SMART APEX diffractometer with a CCD detector and Mo-Kα. radiation. Electron microprobe analysis gave empirical formulae for lomonosovite (Na9.50Mn0.16Ca0.11)Σ9.77(Ti4+2.83Nb0.51Mn0.272+Zr0.11Mg0.11Fe2+0.10Fe3+0.06Ta0.01)Σ4.00(Si2.02O7)2(P0.98O4)2(O3.50F0.50)Σ4, Z = 1, calculated on the basis of 22(O+F) a.p.f.u., with H2O determined from structure refinement and Fe3+/(Fe2++Fe3+) ratios obtained by Mössbauer spectroscopy. The crystal structures of lomonosovite and murmanite are a combination of a titanium silicate (TS) block and an intermediate (I) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral), and is characterized by a planar cell based on translation vectors, t1 and t2, with t1\ ∼5.5 and t2 ∼7 Å and ttA t2 close to 90°. The TS block exhibits linkage and stereochemistry typical for Group IV (Ti = 4 a.p.f.u.) of the Ti disilicate minerals: two H sheets connect to the O sheet such that two (Si2O7) groups link to Ti polyhedra of the O sheet adjacent along tx. In murmanite and lomonosovite, the invariant part of the TS block is of composition Na4Ti4(Si2O7)2O4. There is no evidence of vacancy-dominant cation sites or (OH) groups in the O sheet of lomonosovite or murmanite. In lomonosovite, the I block is a framework of Na polyhedra and P tetrahedra which gives 2[Na3 (PO)4] p.f.u. In murmanite, there are four (H2O) groups in the intermediate space between TS blocks. In lomonosovite, TS and I blocks alternate along c. In murmanite, TS blocks are connected via hydrogen bonding. The H atoms were located and details of the hydrogen bonding are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: CNR - Istituto di Geoscienze e Georisorse, Unità di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

References

Belov, N.V. (1976) Essays on Structural Mineralogy. Nedra, Moscow (in Russian).Google Scholar
Belov, N.V., Gavrilova, G.S., Solov'eva, L.P. and Khalilov, A.D. (1977) Refined structure of lomonosovite. Soviet Physics Doklady, 22, 422424.Google Scholar
Boggild, O.B. (1901) Epistolite, a new mineral. Meddelelser om Gronland, 24, 183190.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1–30 in: Structure and Bonding in Crystals 11 (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Bussen, I.V., Denisov, A.P., Zabavnikova, N.I., Kozyreva, L.V., Men'shikov, Yu, P. and Lipatova, E.A. (1973) Vuonnemite, a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 102(4), 423426.(in Russian).Google Scholar
Camara, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-Ill Ti-disilicate mineral. Mineralogical Magazine, 71, 593610.CrossRefGoogle Scholar
Drozdov, Yu, N Batalieva, N.G., Voronkov, A.A. and Kuz'min, E.A. (1974) Crystal structure of NanNb2TiSi4P2O25F. Soviet Physics Doklady, 19(5), 258260.Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 37, 13111320.Google Scholar
Gerasimovsky, V.I. (1950) Lomonosovite, a new mineral. Doklady Akademii Nauk SSSR, 70, 8386.(in Russian).Google Scholar
Gutkova, N.N. (1930) Sur un nouveau titanosilicate - la murmanite - de Lujawrurt (Kalbinsel Kola). Comptes Rendus de I'Academie Science URSS, 731.Google Scholar
Ingalls, R. (1964) Electric-field gradient tensor in ferrous compounds. Physical Review, 133A, 787795.CrossRefGoogle Scholar
International Tables for X-ray Crystallography (1992) Dordrecht, V.C., Kluwer Academic Publishers.Google Scholar
Karup-Moller, S. (1983) Lomonosovite from the Ilimaussaq alkaline complex, South Greenland. Neues Jahrbuch fur Mineralogie Abhandlungen, 148, 8396.Google Scholar
Karup-Moller, S. (1986) Murmanite from the Ilimaussaq alkaline complex, South Greenland. Neues Jahrbuch fur Mineralogie Abhandlungen, 155, 6788.Google Scholar
Khalilov, A.D. (1989) Refinement of the crystal structure of murmanite and new data on its crystal chemistry properties. Mineralogicheskii Zhurnal, 11, N5, 1927.(in Russian).Google Scholar
Khalilov, A.D., Mamedov, Kh.S., Makarov, Ye.S. and P'yanzina, L.Ya. (1965a) Crystal structure of murmanite. Doklady Akademii Nauk SSSR, 161, 150152.Google Scholar
Khalilov, A.D., Makarov, Ye.S., Mamedov, Kh.S. and P'yanzina, L.Ya. (1965b) Crystal structures of minerals of the murmanite-lomonosovite group. Doklady Akademii Nauk SSSR,, 162, 138140.Google Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Rocks. Clarendon Press, Oxford, UK.Google Scholar
Nemeth, P., Ferraris, G., Radnoczi, G. and Ageeva, O.A. (2005) TEM and X-ray study of syntactic inter-growths of epistolite, murmanite and shkatulkalite. The Canadian Mineralogist, 43, 973987.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” c|>(pZ) procedure for improved quantitative microanalysis. Pp. 104106.in: Microbeam Analysis-1985 (Armstrong, IT., editor). San Francisco Press, San Francisco, California, USA.(pZ)+procedure+for+improved+quantitative+microanalysis.+Pp.+104–106.in:+Microbeam+Analysis-1985+(Armstrong,+IT.,+editor).+San+Francisco+Press,+San+Francisco,+California,+USA.>Google Scholar
Pyatenko, Yu.A., Voronkov, A.A. and Pudovkina, Z.V. (1976) Mineralogieal crystal chemistry of titanium. Nauka, Moscow (in Russian).Google Scholar
Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfme parameter distributions in Mossbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B58, 8597.CrossRefGoogle Scholar
Rastsvetaeva, R.K. and Andrianov, V.I. (1986) New data on the crystal structure of murmanite. Kristallografiya, 31, 8287.(in Russian).Google Scholar
Rastsvetaeva, R.K., Simonov, V.I. and Belov, N.V. (1971) Crystal structure of lomonosovite, Na5Ti2[Si2O7][PO4]O2 . Soviet Physics Doklady, 16, 182185.Google Scholar
Selivanova, E.A., Yakovenchuk, V.N., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2008) Features of low-temperature alteration of Ti- and Nb-phyllosilicates under laboratory conditions. Pp. 143–151 in: Minerals as Advanced Materials (Krivovichev, S.V., editor). Springer-Verlag: Berlin, Heidelberg.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (1998) SADABS User Guide, University of Göttingen, Germany.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. and Camara, F. (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. The Canadian Mineralogist, 45, 12471261.CrossRefGoogle Scholar
Sokolova, E. and Camara, F. (2008a) From structure topology to chemical composition. III. Titanium silicates: crystal chemistry of barytolamprophyllite. The Canadian Mineralogist, 46, 403412.CrossRefGoogle Scholar
Sokolova, E. and Camara, F. (20086) From structure topology to chemical composition. VIII. Titanium silicates: the crystal chemistry of mosandrite from type locality of Laven (Skadon), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogieal Magazine, 72, 887897.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11–14. trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadian Mineralogist, 39, 12751294.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008a) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadian Mineralogist, 46, 14691477.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2008b) From structure topology to chemical composition. V. Titanium silicates: crystal chemistry of nacareniob-site-(Ce). The Canadian Mineralogist, 46, 14931502.Google Scholar
Sokolova, E., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1987a) Special features of the crystal structure of Na14 Ca Mg Ti4 [Si2O7]2 [PO4] O4 F2 — homologue of sulphohalite and lomonosovite structure types. Mineralogicheskii Zhurnal, 9(3), 2835.(in Russian).Google Scholar
Sokolova, E., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1987b) Crystal structure of Na17Ca3Mg(Ti,Mn)4[Si2O7]2[PO4]6O2F6, a new representative of the family of layered titanium silicates. Soviet Physics Doklady, 32, 344347.Google Scholar
Sokolova, E., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1988) Crystal structure of sobolevite. Soviet Physics Doklady, 33, 711714.Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 15271544.CrossRefGoogle Scholar
Sokolova, E., Camara, F., Hawthorne, F.C. and Abdu, Y. (2009) From structure topology to chemical composition. VII. Titanium silicates: the crystal structure and crystal chemistry of jinshajiangite. European Journal of Mineralogy (in press).Google Scholar
Vlasov, K.A., Kuz'menko, M.V., Es'kova, E.M. (1959) Lovozero Alkaline Massif. Akademii Nauk SSSR Press, Moscow, 623 pp.Google Scholar
Supplementary material: File

Cámara et al. supplementary material

Structure factors for lomonosovite 1

Download Cámara et al. supplementary material(File)
File 76.7 KB
Supplementary material: PDF

Cámara et al. supplementary material

Structure factors for lomonosovite 2

Download Cámara et al. supplementary material(PDF)
PDF 117.1 KB
Supplementary material: File

Cámara et al. supplementary material

Structure factors for murmanite 1

Download Cámara et al. supplementary material(File)
File 44.1 KB
Supplementary material: PDF

Cámara et al. supplementary material

Structure factors for murmanite 2

Download Cámara et al. supplementary material(PDF)
PDF 39.3 KB