Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:26:02.384Z Has data issue: false hasContentIssue false

Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia

Published online by Cambridge University Press:  28 February 2018

Martin Števko*
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
Pavel Uher
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Fernando Cámara
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università di Milano, via Mangiagalli 34, 20133 Milano, Italy
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Tomáš Vaculovič
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
*

Abstract

The new mineral fluorarrojadite-(BaNa), ideally BaNa4CaFe13Al(PO4)11(PO3OH)F2 was found on the dump of Elisabeth adit near Gemerská Poloma, Slovakia. It occurs in hydrothermal quartz veins intersecting highly fractionated, topaz–zinnwaldite S-type leucogranite. Fluorarrojadite-(BaNa) is associated with fluorapatite, ‘fluordickinsonite-(BaNa)’, triplite, viitaniemiite and minor amounts of other minerals. It forms fine-grained irregular aggregates up to 4 cm x 2 cm, which consist of individual anhedral grains up to 0.01 mm in size. It has a yellowish-brown to greenish-yellow colour, very pale yellow streak and a vitreous to greasy lustre. Mohs hardness is ~4½ to 5. The fracture is irregular and the tenacity is brittle. The measured density is 3.61(2) g cm–3 and calculated density is 3.650 g cm–3. Fluorarrojadite-(BaNa) is biaxial (+) and nonpleochroic. The calculated refractive index based on empirical formula is 1.674. The empirical formula (based on 47 O and 3 (OH + F) apfu) is A1(Ba0.65K0.35)Σ1.00 A2Na0.35 B1(Na0.54Fe0.46)Σ1.00 B2Na0.54Ca(Ca0.74Sr0.20Pb0.02Ba0.04)Σ1.00Na2 Na3Na0.46 M(Fe7.16Mn5.17Li0.37Mg0.12Sc0.08Zn0.06Ga0.02Ti0.02)Σ13.00 Al1.02P11O44PO3.46(OH)0.54 W(F1.54OH0.46). Fluorarrojadite-(BaNa) is monoclinic, space group Cc, a = 16.563(1) Å, b = 10.0476(6) Å, c = 24.669(1) Å, β = 105.452(4)°, V = 3957.5(4) Å3 and Z = 4. The seven strongest reflections in the powder X-ray diffraction pattern are [dobs in Å, (I), hkl]: 3.412, (21), 116; 3.224, (37), 206; 3.040, (100), 42$\bar 4$; 2.8499, (22), 33$\bar 3$; 2.7135, (56), 226; 2.5563, (33), 028 and 424; 2.5117, (23), 040. The new mineral is named according to the nomenclature scheme of arrojadite-group minerals, approved by the IMA CNMNC. In fluorarrojadite-(BaNa), Fe2+ is a dominant cation at the M site (so the root-name is arrojadite) and two suffixes are added to the root-name according to the dominant cation of the dominant valence state at the A1 (Ba2+) and B1 sites (Na+). A prefix fluor is added to the root-name as F is dominant over (OH) at the W site.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Bajaník, Š., Ivanička, J., Mello, J., Pristaš, J., Reichwalder, P., Snopko, L., Vozár, J. and Vozárová, A. (1984) Geological map of the Slovenské Rudohorie Mts. – Eastern part 1: 50 000. Dionýz Štúr Institute of Geology, Bratislava.Google Scholar
Breiter, K., Broska, I. and Uher, P. (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geologica Carpathica, 66, 1936.Google Scholar
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute Washington Yearbook, 61, 132135.Google Scholar
Cámara, F., Oberti, R., Chopin, C. and Medenbach, O. (2006) The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. American Mineralogist, 91, 12491259.Google Scholar
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F. and Bracco, R. (2015) Fluorcarmoite-(BaNa), IMA 2015-062. CNMNC Newsletter No. 27, October 2015, 1229. Mineralogical Magazine, 79, 12291236.Google Scholar
Chopin, C., Oberti, R. and Cámara, F. (2006) The arrojadite enigma: II. Compositional space, new members, and nomenclature of the group. American Mineralogist, 91, 12601270.Google Scholar
Della Ventura, G., Bellatreccia, F., Radica, F., Chopin, C. and Oberti, R. (2014) The arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy study. European Journal of Mineralogy, 26, 679688.Google Scholar
Demartin, F., Gramaccioli, C.M., Pilati, T. and Sciesa, E. (1996) Sigismundite, (Ba,K,Pb)Na3(Ca,Sr)(Fe,Mg,Mn)14Al(OH)2(PO4)12, a new Ba-rich member of the arrojadite group from Spluga Valley, Italy. Canadian Mineralogist, 34, 827834.Google Scholar
Dianiška, I., Breiter, K., Broska, I., Kubiš, M. and Malachovský, P. (2002) First phosphorous-rich Nb-Ta-Sn-specialised granite from the Carpathians – Dlhá dolina valley granite pluton, Gemeric superunit. Geologica Carpathica, 53, Special Issue (CD-ROM).Google Scholar
Dianiška, I., Uher, P., Hurai, V., Huraiová, M., Frank, W., Konečný, P. and Kráľ, J. (2007) Mineralization of rare-metal granites. Pp. 254330 in: Sources of Fluids and Origin of Mineralizations in the Gemeric Unit (Hurai, V., editor). Open file report, Dionýz Štúr Institute of Geology, Bratislava [in Slovak].Google Scholar
Frost, R.L., Xi, Y., Schol, R. and Campos Horta, L.F. (2013) The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, 138145.Google Scholar
Kilík, J. (1997) Geological characteristic of the talc deposit in Gemerská Poloma-Dlhá dolina. Acta Montanistica Slovaca, 2, 7180 [in Slovak].Google Scholar
Kohút, M. and Stein, H. (2005) Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineralogy and Petrology, 85, 117129.Google Scholar
Kubiš, M. and Broska, I. (2005) The role of boron and fluorine in evolved granitic rock systems (on the example of the Hnilec area, Western Carpathians). Geologica Carpathica, 56, 193204.Google Scholar
Kubiš, M. and Broska, I. (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. Journal of Geosciences, 55, 131148.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin.Google Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.Google Scholar
Moore, P.B. and Ito, J. (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineralogical Magazine, 43, 227235.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.Google Scholar
Ondruš, P. (1993) A computer program for analysis of X-ray powder diffraction patterns. Materials Sci. Forum, EPDIC-2, Enchede, 133–136, 297300.Google Scholar
Petrasová, K., Faryad, S.W., Jeřábek, P. and Žáčková, E. (2007) Origin and metamorphic evolution of magnesite-talc and adjacent rocks near Gemerská Poloma, Slovak Republic. Journal of Geosciences, 52, 125132.Google Scholar
Petrík, I. and Kohút, M. (1997) The evolution of granitoid magmatism during the Hercynian orogen in the Western Carpathians. Pp. 235252 in: Geological Evolution of the Western Carpathians (Grecula, P., Hovorka, D. and Putiš, M., editors). Mineralia Slovaca Monograph, Bratislava.Google Scholar
Petrík, I., Čík, Š., Miglierini, M., Vaculovič, T., Dianiška, I. and Ozdín, D. (2014) Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia). Mineralogical Magazine, 78, 507533.Google Scholar
Poller, U., Uher, P., Broska, I., Plašienka, D. and Janák, M. (2002) First Permian - Early Triassic zircon ages for tin-bearing granites from the Gemeric Unit (Western Carpathians, Slovakia): connection to the post-collisional extension of theVariscan orogen and S-type granite magmatism. Terra Nova, 14, 4148.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3 l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Rao, C., Wang, R.C., Hatert, F. and Baijot, M. (2014) Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26, 179188.Google Scholar
Števko, M., Uher, P., Sejkora, J., Malíková, R., Škoda, R. and Vaculovič, T. (2015) Phosphate minerals from the hydrothermal quartz veins in specialized S-type granites, Gemerská Poloma (Western Carpathians, Slovakia). Journal of Geosciences, 60, 237249.Google Scholar
Števko, M., Sejkora, J., Uher, P. and Cámara, F. (2016) Fluorarrojadite-(BaNa), IMA 2016-075. CNMNC Newsletter No. 34, December 2016, page 1318; Mineralogical Magazine, 80, 13151321.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System. 9th edition. Verlagsbuchhandlung, E. Scheizerbarťsche (Nägele u. Obermiller), Stuttgart, 870 pp.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.Google Scholar
Uher, P. and Broska, I. (1996) Post-orogenic Permian granitic rocks in the Western Carpathian–Pannonian area: geochemistry, mineralogy and evolution. Geologica Carpathica, 47, 311321.Google Scholar
Vignola, P., Hatert, F., Baijot, M., Dal Bo, F., Andò, S., Bersani, D., Risplendente, A. and Vanini, F. (2015) Arrojadite-(BaNa), IMA 2014-071. CNMNC Newsletter No. 23, February 2015, page 55; Mineralogical Magazine, 79, 5158.Google Scholar
von Knorring, O. (1969) A note on the phosphate mineralisation at the Buranga pegmatite, Rwanda. Bulletin du Service géologique du Rwanda, 5, 4245.Google Scholar