Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T09:44:01.101Z Has data issue: false hasContentIssue false

Fluoralforsite, Ba5(PO4)3F – a new apatite-group mineral from the Hatrurim Basin, Negev Desert, Israel

Published online by Cambridge University Press:  31 July 2023

Arkadiusz Krzątała
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Katarzyna Skrzyńska*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Georgia Cametti
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Irina Galuskina
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
Evgeny Galuskin
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
*
Corresponding author: Katarzyna Skrzyńska; Email: [email protected]

Abstract

Fluoralforsite, ideally Ba5(PO4)3F, (space group P63/m (#176), Z = 2, a = 10.0031(2) Å, c= 7.5382(2) Å and V = 653.23(3) Å3), is a new mineral species of the apatite group – a Ba-analogue of fluorapatite and a F-analogue of alforsite. It was discovered in rankinite paralava filling cracks in pyrometamorphic gehlenite hornfels near the tributary of wadi Zohar and Gurim Anticline, Hatrurim Basin, Negev Desert, Israel. Fluoralforsite occurs in small intergranular spaces between large gehlenite and garnet crystals and in enclaves inside large rankinite crystals with other Ba minerals such as walstromite, zadovite, bennesherite, gurimite, mazorite, barioferrite and baryte. It forms tiny transparent, colourless crystals up to 50 μm with a white streak and a vitreous lustre. The cleavage was not observed. It exhibits a brittle tenacity and a conchoidal fracture. The estimated Mohs hardness is 4–4½, and its calculated density is 4.57 g/cm–3. Fluoralforsite is uniaxial (–) with refractive indices (589 nm) nω = 1.689(3) and nɛ = 1.687(3). The empirical crystal-chemical formula for the holotype calculated on the basis of 8 cations is: (Ba3.81Ca0.97Na0.07K0.05Sr0.05Fe0.05)Σ5(P5+2.32V5+0.29S6+0.22Si0.17)Σ3O12(F0.85Cl0.13)Σ0.98. The crystal structure was refined from single-crystal X-ray diffraction data with R1 = 0.0192. The structural investigation indicated an ordered arrangement of Ba/Ca at the M1 site within individual columns running along the c-axis, but a disordered distribution among adjacent columns throughout the structure, which enables the maintenance of the P63/m space group. Fluoralforsite was formed at the final stage of crystallisation as a result of a reaction between the primary mineral assemblages and residual melt.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Baikie, T., Schreyer, M., Wei, F., Herrin, J.S., Ferraris, C., Brink, F., Topolska, J., Piltz, R.O., Price, J. and White, T.J. (2014) The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in lead apatite-2H type structures. Mineralogical Magazine, 78, 325345.CrossRefGoogle Scholar
Biagioni, C., Bosi, F., Hålenius, U. and Pasero, M. (2017) The crystal structure of turneaureite, Ca5(AsO4)3Cl, the arsenate analog of chlorapatite, and its relationships with the arsenate apatites johnbaumite and svabite. American Mineralogist, 102, 19811986.CrossRefGoogle Scholar
Biagioni, C., Hålenius, U., Pasero, M., Karlsson, A. and Bosi, F. (2019) Hydroxylhedyphane, Ca2Pb3(AsO4)3(OH), a new member of the apatite supergroup from Långban, Sweden. European Journal of Mineralogy, 31, 10151024.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2015) Earth's Phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Scientific Reports, 5, 8355.CrossRefGoogle ScholarPubMed
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Comodi, P., Liu, Y., Stoppa, F. and Woolley, A.R. (1999) A multi-method analysis of Si-, S- and REE -rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineralogical Magazine, 63, 661672.CrossRefGoogle Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Friis, H., Balić-Žunić, T., Pekov, I.V. and Petersen, O.V. (2004) Kuannersuite-(Ce), Ba6Na2REE2(PO4)6FCl, a new member of the apatite group, from the Ilimaussaq alkaline complex, South Greenland. The Canadian Mineralogist, 42, 95106.CrossRefGoogle Scholar
Frost, R.L., Palmer, S.J., Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S. and Keeffe, E.C. (2011) A Raman spectroscopic study of the different vanadate groups in solid-state compounds-model case: mineral phases vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2⋅2H2O]. Journal of Raman Spectroscopy, 42, 17011710.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Włodyka, R. and Dzierżanowski, P. (2015a) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015b) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ,,old’’ mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Krzątała, A., Vapnik, Y., Kusz, J., Dulski, M., Gardocki, M., Gurbanov, A.G. and Dzierżanowski, P. (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499513.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P. and Murashko, M. (2017a) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 10091019.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Krüger, B., Grew, E.S., Vapnik, Y., Dzierażanowski, P. and Murashko, M. (2017b) Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel – natural analogue of the SFCA phase. European Journal of Mineralogy, 29, 101116.CrossRefGoogle Scholar
Geller, Y.I., Burg, A., Halicz, L. and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 2536.CrossRefGoogle Scholar
Gfeller, F., Widmer, R., Krüger, B., Galuskin, E.V., Galuskina, I.O. and Armbruster, T. (2015) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. European Journal of Mineralogy, 27, 755769.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70.Google Scholar
Hata, M., Marumo, F., Iwai, S. and Aoki, H. (1979) Structure of barium chlorapatite. Acta Crystallographica, B35, 23822384.CrossRefGoogle Scholar
Hatert, F., Mills, S.J., Pasero, M. and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names. European Journal of Mineralogy, 25, 113115.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington, D.C.Google Scholar
Hazrah, K. and Antao, S. (2022) Apatite, Ca10(PO4)6(OH,F,Cl)2: structural variations, natural solid solutions, intergrowths, and zoning. Minerals, 12, 527.CrossRefGoogle Scholar
Henderson, C.M.B., Bell, A.M.T., Charnock, J.M., Knight, K.S., Wendlandt, R.F., Plant, D.A. and Harrison, W.J. (2009) Synchrotron X-ray absorption spectroscopy and X-ray powder diffraction studies of the structure of johnbaumite [Ca10(AsO4)6(OH,F)2 ] and synthetic Pb-, Sr- and Ba-arsenate apatites and some comments on the crystal chemistry of the apatite structure type in general. Mineralogical Magazine, 73, 433455.CrossRefGoogle Scholar
Hughes, J.M. and Rakovan, J. (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Pp. 112 in: Phosphates (Kohn, M.L., Rakovan, J., and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Washington, D.C.Google Scholar
Hughes, J.M., Cameron, M. and Crowley, K.D. (1989) Structural variations in natural F, OH, and Cl apatites. American Mineralogist, 74, 870876.Google Scholar
Hughes, J.M., Cameron, M. and Crowley, K.D. (1990) Crystal structures of natural ternary apatites: Solid Solution in the Ca5(PO4)3X (X: F, OH, Cl) system. American Mineralogist, 75, 295304.Google Scholar
Hughes, J.M., Harlov, D. and Rakovan, J.F. (2018) Structural variations along the apatite F-OH join. American Mineralogist, 103, 19811987.CrossRefGoogle Scholar
Juroszek, R., Galuskina, I.O., Krüger, B., Krüger, H., Vapnik, Y. and Galuskin, E.V. (2022) Mazorite, IMA 2022-022. CNMNC Newsletter 68. Mineralogical Magazine, 86, 856.Google Scholar
Klevtsova, R.F. (1965) The crystal structure of strontium-apatite. Journal of Structural Chemistry, 5, 2, 292294.CrossRefGoogle Scholar
Krzątała, A., Panikorovskii, T.L., Galuskina, I.O. and Galuskin, E.V. (2018) Dynamic Disorder of Fe3+ Ions in the Crystal Structure of Natural Barioferrite. Minerals, 8, 340.CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2020) Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10, 407.CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2022) Bennesherite, Ba2Fe2+Si2O7: A new melilite group mineral from the Hatrurim Basin, Negev Desert, Israel. American Mineralogist, 107, 138146.CrossRefGoogle Scholar
Levitt, S.R. and Condrate, R.A., Sr. (1970) The vibrational spectra of lead apatites. American Mineralogist, 55, 15621575.Google Scholar
Litasov, K.D. and Podgornykh, N.M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite: Raman spectroscopy of various phosphate minerals. Journal of Raman Spectroscopy, 48, 15181527.CrossRefGoogle Scholar
Mathew, M., Mayer, I., Dickens, J.B. and Schroeder, L.W. (1979) Substitution in Barium-Fluoride Apatite: The Crystal Structures of Ba10(PO4)6F2, Ba6La2Na2(PO4)6F2 and Ba4Nd3Na3(PO4)6F2. Journal of Solid State Chemistry, 28, 7995.CrossRefGoogle Scholar
Meegoda, C., Bonner, C.E., Loutts, G., Stefanos, S. and Miller, G.E. (1999) Raman spectroscopic study of barium fluorapatite. Journal of Luminescence, 81, 101109.CrossRefGoogle Scholar
Newberry, N.G., Essene, E.J. and Peacor, D.R. (1981) Alforsite, a new member of the apatite group: the barium analogue of chlorapatite. American Mineralogist, 66, 10501053.Google Scholar
Nishio-Hamane, D., Ogoshi, Y. and Minakawa, T. (2012) Miyahisaite, (Sr,Ca)2Ba3(PO4)3F, a new mineral of the hedyphane group in the apatite supergroup from the Shimoharai mine, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 107, 121126.Google Scholar
Novikov, I., Vapnik, Y. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Nyfeler, D. and Armbruster, T. (1998) Silanol groups in minerals and inorganic compounds. American Mineralogist, 83, 119125.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Pekov, I.V., Britvin, S.N., Zubkova, N.V., Pushcharovsky, D.Yu., Pasero, M. and Merlino, S. (2010) Stronadelphite, Sr5(PO4)3F, a new apatite-group mineral. European Journal of Mineralogy, 22, 869874.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Husdal, T.A., Kononkova, N.N., Agakhanov, A.A., Zadov, A.E. and Pushcharovsky, D.Y. (2012) Carlgieseckeite-(Nd), NaNdCa3(PO4)3F, a new belovite-group mineral species from the Ilimaussaq alkaline complex, South Greenland. The Canadian Mineralogist, 50, 571580.CrossRefGoogle Scholar
Pieczka, A., Biagioni, C., Gołębiowska, B., Jeleń, P., Pasero, M. and Sitarz, M. (2018) Parafiniukite, Ca2Mn3(PO4)3Cl, a New Member of the Apatite Supergroup from the Szklary Pegmatite, Lower Silesia, Poland: Description and Crystal Structure. Minerals, 8, 485.CrossRefGoogle Scholar
Schulte, A., Buchter, S.C. and Chai, B.H.T. (1995) Raman spectroscopy of fluorophosphate and fluorovanadate laser crystals. Pp. 3442 in: UV and Visible Lasers and Laser Crystal Growth (Scheps, R. and Kokta, M.R., editors). SPIE, San Jose, United States.CrossRefGoogle Scholar
Sharygin, V., Vapnik, Y., Sokol, E., Kamenetsky, V. and Shagam, R. (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFI I Program with Abstracts, 189192.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sudarsanan, K. and Young, R.A. (1978) Structural interactions of F, Cl and OH in apatites. Acta Crystallographica, B34, 14011407.CrossRefGoogle Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex Hatrurim Basin, Israel. Pp. 133153 in: Geology of Coal Fires. Case Studies from Around the World. The Geological Society of America, Reviews in Engineering, Vol. 18.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Supplementary material: File

Krzątała et al. supplementary material 1

Krzątała et al. supplementary material
Download Krzątała et al. supplementary material 1(File)
File 69.1 KB
Supplementary material: File

Krzątała et al. supplementary material 2

Krzątała et al. supplementary material
Download Krzątała et al. supplementary material 2(File)
File 625.7 KB
Supplementary material: File

Krzątała et al. supplementary material 3

Krzątała et al. supplementary material
Download Krzątała et al. supplementary material 3(File)
File 34.2 KB