Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T14:42:38.660Z Has data issue: false hasContentIssue false

Fluid-mineral interactions and constraints on monazite alteration during metamorphism

Published online by Cambridge University Press:  05 July 2018

B. Budzyń*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland
C. J. Hetherington
Affiliation:
Department of Geosciences, Texas Tech University, Lubbock, TX 79409-1053, USA
M. L. Williams
Affiliation:
Department of Geosciences, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
M. J. Jercinovic
Affiliation:
Department of Geosciences, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
M. Michalik
Affiliation:
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
*

Abstract

Clasts of metamorphosed Cadomian granites from the ∼50—60 Ma Carpathian flysch in Gródek near the Rożnowskie Lake (Silesian Unit, SE Poland) are studied. They are considered to represent the Silesian Ridge, one of the hypothetical, currently unexposed source areas that supplied Carpathian sedimentary basins with clastic material. The gneisses preserve several examples of corona textures that include cores of primary monazite surrounded by polygonal grains of secondary apatite with thorianite inclusions, with intermediate zones of lamellar grains of secondary monazite and outermost rims of clay minerals, or various combinations thereof. Preservation of the complete textures is rare with polygonal apatite with thorianite inclusions, lamellar grains of monazite and clay minerals being particularly prevalent. Locally, polygonal apatite with thorianite inclusions surrounded by allanite and REE-epidote corona with a bastnasite-synchysite phase occurs also. The textures observed developed during primary monazite breakdown and replacement by secondary minerals. The variation in reaction products indicates that alteration was strictly dependent on the local chemical system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancey, M., Bastenaire, F. and Tixier, R. (1978) Application of statistical methods in microanalysis. Pp. 319343 in: Microanalysis and Scanning Electron Microscopy (Maurice, F., Meny, L. and Tixier, R., editors). Les Editions de Physique, Orsay, France.Google Scholar
Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. Journal of Petrology, 37, 521552.CrossRefGoogle Scholar
Bird, D.K. and Spieler, A.R. (2004) Epidote in geothermal systems. Pp. 235300 in: Epidotes (Liebscher, A. and Franz, G., editors). Reviews in Mineralogy and Geochemistry, 56, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Broska, I. and Siman, P. (1998) The breakdown of monazite in the West-Carpathian Veporic ortho-gneisses and Tatric granites. Geologica Carpathica, 49, 161167.Google Scholar
Broska, I., Williams, C.T., Janák, M. and Nagy, G. (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82, 7183.CrossRefGoogle Scholar
Bucher, K. and Frey, M. (2002) Petrogenesis of Metamorphic Rocks. 7th edition. Springer, Berlin.CrossRefGoogle Scholar
Budzyń, B., Hetherington, C.J., Williams, M.L., Jercinovic, M.J., Dumond, G. and Michalik, M. (2008a) Application of electron probe microanalysis Th-U-total Pb geochronology to provenance studies of sedimentary rocks: An example from the Carpathian Flysch. Chemical Geology, 254, 148163.CrossRefGoogle Scholar
Budzyń, B., Kusiak, M.A., Dunkley, D.J., Poprawa, P. and Malata, T. (20086) SHRIMP dating of zircon in crystalline rocks clasts from the Carpathian flysch. Geophysical Research Abstracts, 10, EGU2008-A-08345, 1-2.Google Scholar
Catlos, E.J., Sorensen, S.S. and Harrison, T.M. (2000) Th-Pb ion-microprobe dating of allanite. American Mineralogist, 85, 633648.CrossRefGoogle Scholar
Catlos, E.J., Baker, C.B., Çemen, I. and Ozerdem, C. (2008) Whole rock major element influences on monazite growth: examples from igneous and metamorphic rocks in the Menderes Massif, western Turkey. Mineralogia, 39, 730.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., Grove, M. and Harrison, T.M. (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Ada, 68, 829840.CrossRefGoogle Scholar
Crowley, J.L. and Ghent, E.D. (1999) An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite; the role of Pb diffusion versus overgrowth and recrystallization. Chemical Geology, 157, 285302.CrossRefGoogle Scholar
Dumond, G., McLean, N., Williams, M.L., Jercinovic, MJ. and Bowring, S.A. (2008) High-resolution dating of granite petrogenesis and deformation in a lower crustal shear zone: Athabasca granulite terrane, western Canadian Shield. Chemical Geology, 254, 175196.CrossRefGoogle Scholar
Dwornik, M. and Budzyń, B. (2008) Zastosowanie komputerowej analizy obrazu w celu okreslenia stopnia rozpadu monacytu (Application of image analysis to determination of monazite breakdown stage). Materialy Krakowskiej Konferencji Mlodych Uczonych (The Kraków Conference of Young Erudites), 73—78 [in Polish with English summary].Google Scholar
Evans, J.A., Zalasiewicz, J.A., Fletcher, I., Rasmussen, B. and Pearce, N.J.G. (2000) Dating diagenetic monazite in mudrocks: constraining the oil window? Journal of the Geological Society, London, 159, 619622.CrossRefGoogle Scholar
Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J. and Corrales, L.R. (2003) Radiation effects in zircon. Pp. 387425 in: Zircon (Hanchar, J.M. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Ferry, J.M. (2000) Patterns of mineral occurrence in metamorphic rocks. American Mineralogist, 85, 15731588.CrossRefGoogle Scholar
Finger, F., Broska, I., Roberts, M.P. and Schermaier, A. (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83, 248258.CrossRefGoogle Scholar
Franz, G. and Liebscher, A. (2004) Physical and chemical properties of the epidote minerals — an introduction. Pp. 1—82 in: Epidotes (Liebscher, A. and Franz, G., editors). Reviews in Mineralogy and Geochemistry, 56, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Gardes, E., Jaoul, O., Montel, J., Seydoux-Guillaume, A.M. and Wirth, R. (2006) Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ⇌ 2Nd3+ interdiffusion. Geochimica et Cosmochimica Ada, 70, 23252336.CrossRefGoogle Scholar
Gawel, A. (1931) Granity z warstw krośnieńskich fliszu karpackiego okolic Sanoka. Granite aus den Krosnoschichten in der Umgebung von Sanok. PAU Spraw., 36. Bulletin of the Polish Academy of Sciences., Series A, 653—664 [in Polish].Google Scholar
Gieré, R. and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. Pp. 431—493 in: Epidotes (Liebscher, A. and Franz, G., editors). Reviews in Mineralogy and Geochemistry, 56, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Glowacki, E. (1959) Skały egzotyczne z warstw istebniańskich w Jankowej w Karpatach Środkowych. Exotic rocks from the Istebna beds of Jankowa anticline, Middle Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 29, 265280.[in Polish with English summary].Google Scholar
Gregory, C.J., Rubatto, D., Allen, C., Williams, I.S., Hermann, J. and Ireland, T.R. (2007) Allanite micro-geochronology: a SHRIMP and LA-ICP-MS study. Chemical Geology, 245, 162182.CrossRefGoogle Scholar
Harlov, D.E. and Hetherington, C.J. (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature. American Mineralogist, 95, 11051108.CrossRefGoogle Scholar
Jacher-Śliwczyńska, K. (2004) The Nd model ages of the gneissic pebbles from Grodek on Roznowskie Lake — preliminary data. Polskie Towarzystwo Mineralogiczne — Prace Specjalne, 24, 199202.Google Scholar
Janots, E., Brunet, F., Goffé, B., Poinssot, C, Burchard, M. and Cemic, L. (2007) Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology, 154, 114.CrossRefGoogle Scholar
Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. and Spandler, C. (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610°C. Journal of Metamorphic Geology, 26, 509526.CrossRefGoogle Scholar
Janots, E., Engi, M., Rubatto, D., Berger, A., Gregory, C. and Rahn, M. (2009) Metamorphic rates in collisional orogeny from in situ allanite and monazite dating. Geology, 37, 1114.CrossRefGoogle Scholar
Jercinovic, M.J., Williams, M.X. and Lane, E.D. (2008) In situ trace element analysis in complex, multiphase materials by EPMA. Chemical Geology, 254, 197215.CrossRefGoogle Scholar
Kelly, N.M., Clarke, G.L. and Harley, S.L. (2006) Monazite behaviour and age significance in poly-metamorphic high-grade terrains: A case study from the western Musgrave Block, central Australia. Lithos, 88, 100134.CrossRefGoogle Scholar
Kempe, U., Lehmann, B., Wolf, D., Rodionov, N., Bombach, K., Schwengfelder, U. and Dietrich, A. (2008) U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Ada, 72, 43524366.CrossRefGoogle Scholar
Kingsbury, J.A., Miller, C.F., Wooden, J.L. and Harrison, T.M. (1993) Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, U.S.A.: implications for thermo-chronometry. Chemical Geology, 110, 147167.CrossRefGoogle Scholar
Krenn, E., Putz, H., Finger, F. and Paar, W. (2008) Unusual monazite with high S, Sr, Eu and common Pb contents in ore bearing mylonites from the Schellgaden mining district, Austria. Geophysical Research Abstracts, Vol. 10, EGU2008-A-11796.Google Scholar
Kryza, R., Zalasiewicz, J.A., Charnley, N., Milodowski, A.E., Kostylew, J. and Tyszka, R., (2004) In-situ growth of monazite in anchizonal to epizonal mudrocks: first record from the Variscan accretionary prism of the Kaczawa Mountains, West Sudetes, SW Poland. Geologia Sudetica, 36, 3951.Google Scholar
Książkiewicz, M. (1931) Spostrzezenia nad występowa-niem otoczaków skał prakarpackich w Karpatach Wadowickich. Rocznik Polskiego Towarzystwa Geologicznego, 7, 319329.[in Polish].Google Scholar
Książkiewicz, M. (1965) Les cordillères dans les mers crètacées et paléogènes des Carpates du Nord. Bulletin Societe Gé;ologique France, 7, 443455.CrossRefGoogle Scholar
Lee, D.E. and Bastron, H. (1967) Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochimica et Cosmochimica Ada, 31, 339356.CrossRefGoogle Scholar
Lexa, I., Bezák, V., Elečko, M., Polák, M., Potfaj, M. and Vozár, J. (editors) Geological map of Western Carpathians and adjacent areas. Ministry of the Environment of Slovak Republic, Bratislava, 2000.Google Scholar
Mahan, K.H., Goncalves, P., Williams, M.L. and Jercinovic, MJ. (2006) Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. Journal of Metamorphic Geology, 24, 193217.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Michalik, M., Budzyń, B. and Gehrels, G. (2006) Cadomian granitoid elasts derived from the Silesian Ridge (results of the study of gneiss pebbles from Gródek at the Jezioro Rożnowskie Lake). Mineralogia Polonica — Special Papers, 29, 168171.Google Scholar
Montel, J.-M. (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110, 127146.CrossRefGoogle Scholar
Oszczypko, N. (2006) Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169194.Google Scholar
Passchier, C.W. and Trouw, R.A.J. (2005) Microtectonics, 2nd edition. Springer, Berlin, 366 pp.Google Scholar
Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956983.CrossRefGoogle Scholar
Petrik, I., Broska, I., Lipka, J. and Siman, P. (1995) Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 7994.Google Scholar
Pharaoh, T.C. (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics, 314, 1741.CrossRefGoogle Scholar
Poitrasson, F., Chenery, S. and Bland, D.J. (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth and Planetary Science Letters, 145, 7996.CrossRefGoogle Scholar
Poprawa, P. and Malata, T. (2006) Model późnojur-ajsko-wczesnomioceńskiej ewolucji tektonicznej za-chodnich Karpat zewnetrznych (Model of Late Jurassic to Early Miocene tectonic evolution of the Western Outer Carpathians). Przeglqd Geologiczny, 54, 10661080.[in Polish with English summary].Google Scholar
Poprawa, P., Malata, T., Pécskay, Z., Banaś, M., Skulich, J., Paszkowski, M. and Kusiak, M.A. (2004) Geochronology of crystalline basement of the Western Outer Carpathians’ sediment source areas. Polskie Towarzystwo Mineralogiczne — Prace Specjalne, 24, 329332.Google Scholar
Poprawa, P., Kusiak, M.A., Malata, T., Paszkowski, M., Pécskay, Z. and Skulich, J. (2005) Th-U-Pb chemical dating of monazite and K/Ar dating of mica combined: preliminary study of “exotic” crystalline elasts from the Western Outer Carpathian flysch (Poland). Polskie Towarzystwo Mineralogiczne — Prace Specjalne, 25, 345351.Google Scholar
Poprawa, P., Malata, T., Pécskay, Z., Kusiak, M.A., Banas, M. and Paszkowski, M. (2006) Geochronology of the crystalline basement of the Western Outer Carpathians’ source areas — constraints from the K/Ar dating of mica and Th-U-Pb chemical dating of monazite from the crystalline ‘exotic’ pebbles. Geolines, 20, 110112.Google Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Putnis, A., Hinrichs, R., Putnis, Ch.V., Golla-Schindler, U. and Collins, L.G. (2007) Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos, 95, 1018.CrossRefGoogle Scholar
Pyle, J.M. and Spear, F.S. (2003) Four generations of accessory phase growth in low-pressure migmatites from SW New Hampshire. American Mineralogist, 88, 338351.CrossRefGoogle Scholar
Rakotondrazafy, A.F.M., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Rakotosamizanany, S., Andriamamonjy, A., Ralantoarison, T., Razanatseheno, M., Offant, Y., Gamier, V., Maluski, H., Dunaigre, Ch., Schwarz, D. and Ratrimo, V. (2008) Gem corundum deposits of Madagascar: A review. Ore Geology Reviews, 34, 134154.CrossRefGoogle Scholar
Rasmussen, B. and Muhling, J.R. (2007) Monazite begets monazite: evidence for the dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contributions to Mineralogy and Petrology, 154, 675689.CrossRefGoogle Scholar
Rasmussen, B. and Muhling, J.R. (2009) Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chemical Geology, 264, 311327.CrossRefGoogle Scholar
Read, D., Andreoli, M.A.G., Knoper, M., Williams, C.T. and Jarvis, N. (2002) The degradation of monazite: Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. European Journal of Mineralogy, 14, 487498.CrossRefGoogle Scholar
Seydoux-Guillaume, A.M., Wirth, R., Heinrich, W. and Montel, J.M. (2002a) Experimental determination of thorium partitioning between monazite and xenotime using analytical electron microscopy and X-ray diffraction Rietveld analysis. European Journal of Mineralogy, 14, 869878.CrossRefGoogle Scholar
Seydoux-Guillaume, A.-M., Paquette, J.-L., Wiedenbeck, M., Montel, J.-M. and Heinrich, W. (20026) Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191, 165181.CrossRefGoogle Scholar
Sikora, W.J. (1976) Kordyliery Karpat Zachodnich w swietle tektoniki plyt litosfery. Przeglad Geologiczny, 6, 336349.[in Polish].Google Scholar
Stipp, M., Stünitz, H., Heilbronner, R. and Schmid, S.M. (2002) The eastern Tonale fault zone: ‘a natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology, 24, 18611884.CrossRefGoogle Scholar
Tullis, J. (2002) Deformation of granitic rocks: experimental studies and natural examples. Pp. 5196 in: Plastic Deformation of Minerals and Rocks (Karato, S. and Wenk, H.-R., editors). Reviews in Mineralogy and Geochemistry, 51, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Vernon, R.H. and Paterson, S.R. (2008) How late are K-feldspar megacrysts in granites? Lithos, 104, 327336.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wieser, T. (1949) Egzotyki krystaliczne w kredzie slaskiej okolic Wadowic. Rocznik Polskiego Towarzystwa Geologicznego, 18, 36105.[in Polish].Google Scholar
Wieser, T. (1985) Some remarks on the sedimentation, composition and provenance of exotic bearing conglomerates in the western Polish Carpathians Flysch formations. 13th Congress CBGA, Guide, 1, 5768.Google Scholar
Williams, M.L. and Jercinovic, M.J. (2002) Microprobe monazite geochronology: putting absolute time into micro structural analyses. Journal of Structural Geology, 24, 10131028.CrossRefGoogle Scholar
Williams, M.L., Jercinovic, M.J., Harlov, D.E. and Budzyn, B. (2009) Resetting monazite dates by fluid moderated coupled dissolution-reprecipitation. Eos Trans. AGU, 90 (52), Fall Meet. Suppl., Abstract.Google Scholar
Winchester, J.A. (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics, 360, 521.CrossRefGoogle Scholar
Wing, B., Ferry, J.M. and Harrison, T.M. (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228250.CrossRefGoogle Scholar
Żytko, K., Zajac, R., Gucik, S., Rylko, W., Oszczypko, N., Garlicka, I., Nemčok, J., EliáÜ, M., Menčik, E. and Stránik, Z. (1989) Map of the Tectonic Elements of the Western Outer Carpathians and their Foreland. In: Poprawa, D., Nemcok, J. (editors). Geological Atlas of the Western Outer Carpathians and their Foreland. Polish Geological Institute Warszawa, Geological Survey of Slovak Republic Bratislava, Czech Geological Survey Praha.Google Scholar