Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:36:06.205Z Has data issue: false hasContentIssue false

Fluid-inclusion evidence for the formation conditions of apatite from the Tororo carbonatite complex of eastern Uganda

Published online by Cambridge University Press:  05 July 2018

Andrew H. Rankin*
Affiliation:
Division of Mining Geology, Royal School of Mines, Imperial College, London S.W. 7

Summary

Portions of the carbonatitic fluids responsible for the deposition of apatite from the Tororo car-bonatite complex are trapped and preserved as minute (< 100 µm) inclusions within the apatites. These fluids consist predominantly of alkali-carbonate-bearing brines and demonstrate that water and alkalis played an important role in the formation of the carbonatites from this complex. Furthermore, the opinion that carbonatite ‘magmas’ are richer in alkalis and water than the chemistry of the carbonatites themselves reveal is clearly substantiated. The mean minimum formation temperature of the apatites from five separate carbonatite samples were determined from the homogenization temperatures of 200 primary aqueous inclusions. The results from Limekiln Hill samples (328 °C 321 °C 359 °C) are similar to those from samples of the separate carbonatite mass at Tororo Rock (353 °C, 365 °C).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eckermann, (H. von), 1948. Sveriges geol. Unders. no. 36.CrossRefGoogle Scholar
Eysel, (W.) and Roy, (D. M.), 1973. J. Crystal Growth, 20, 245.CrossRefGoogle Scholar
Girault, (J.), 1966. Bull. Soc.fr. Miniral. Cristallogr. 89, 496.Google Scholar
Gittins, (J.), Allen, (C. R.), and Cooper, (A. F.), 1975. Geol. Mag. 112, 503.CrossRefGoogle Scholar
Heinrich, (E. W.), 1966. The Geology ofCarbonatites. Rand, McNally and Co., N.Y. Google Scholar
King, (B. C.) and Sutherland, (D. S.), 1966. In: Carbonatites (Tuttle, O. F. and Gittins, J., eds.) Interscience.Google Scholar
Kogarko, (L. N.), 1971. Geochem. Int. 8, 90 (Translated from Russian).Google Scholar
Lancelot, (J. R.) and Allegre, (C. J.), 1974. Earth Planet. Sci. Lett. 22, 233.CrossRefGoogle Scholar
Loubet, (M.), Bernat, (M.), Javoy, (M.), and Allegre, (C. J.), 1972. Ibid. 14, 226.Google Scholar
Malinin, (S. D.) and Dernov-Pegarev, (V. F.), 1974. Geokhimiya, 3, 454.Google Scholar
Mitchell, (R. H.) and Krouse, (H. R.), 1975. Geochim. Cosmochim. Ada 39, 1505.CrossRefGoogle Scholar
Pineau, (F.), Javoy, (M.), and Allegre, (C. J.), 1973. Ibid. 37, 2363.Google Scholar
Rankin, (A. H.), 1973. Ph.D. Thesis, Univ. Leicester.Google Scholar
Rankin, (A. H.), 1975. Lithos, 8, 123.CrossRefGoogle Scholar
Rankin, (A. H.) and LeBas, (M. J.), 1974. Mineral. Mag. 39, 564.CrossRefGoogle Scholar
Roedder, (E.), 1967. In: Geochemistry of Hydrothermal Ore Deposits (Barnes, H. L. ed.) Holt, Rinehart and Winston.Google Scholar
Romanchev, (B. P.), 1972. Geochem. Int. 9, 115 (Translated from Russian).Google Scholar
Sutherland, (D. S.), 1966. Ph.D. Thesis, Univ. London.Google Scholar
Wyllie, (P. J.), 1966. In: Carbonatites (Tuttle, O. F. and Gittins, J., eds.) Interscience.Google Scholar
Wyllie, (P. J.), Cox, (K. G.) and Biggar, (G. M.), 1962. J. Petr. 3, 238.CrossRefGoogle Scholar