Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T13:05:39.490Z Has data issue: false hasContentIssue false

The fingerprint of imperial topaz from Ouro Preto region (Minas Gerais state, Brazil) based on cathodoluminescence properties and composition

Published online by Cambridge University Press:  28 February 2018

Teodoro Gauzzi*
Affiliation:
Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
Leonardo Martins Graça
Affiliation:
Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
Leonardo Lagoeiro
Affiliation:
Department of Geology, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
Isolda de Castro Mendes
Affiliation:
Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
Gláucia Nascimento Queiroga
Affiliation:
Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
*

Abstract

A study of the cathodoluminescence (CL) properties of imperial topaz from Ouro Preto region (Minas Gerais state, Brazil) and its relation with trace-element composition was conducted, using scanning electron microscope cathodoluminescence (SEM-CL), optical microscope cathodoluminescence (OM-CL), cathodoluminescence-spectrometry (CL-spectrometry), electron microprobe analysis (EMPA), laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectrometry. Each analytical technique allowed characterization of the imperial topaz fingerprint. SEM-CL panchromatic images show different crystal growth and resorption events in imperial topaz crystals. Colour CL images indicate only blue to violet emissions. The CL-spectra indicate a broad emission band with low intensity peak at ~417 nm and a broad emission band with high intensity and major peaks at 685, 698, 711 and 733 nm. The EMPA indicates high OH content, in which the OH/(OH + F) ratio ranges between 0.35–0.43 (0.72 ≤ OH ≤ 0.86 apfu). High Cu and Zn concentrations (LA-ICP-MS) were measured in the high luminescence areas of SEM-CL images, suggesting both elements as CL-activators in imperial topaz. Raman and CL-spectra indicate high Cr concentrations, corroborated by EMPA and LA-ICP-MS results. The high Cr caused strong luminescence intensities that enabled their superimposition over the OH stretching mode (~3650 cm–1) of topaz in all Raman spectra. Among trace elements, the concentrations of Ti, V, Cr, Mn, Fe, Cu, Zn, Ga and Ge provide the fingerprint of imperial topaz.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Martin Lee

References

Agangi, A., Kamenetsky, V.S., Hofmann, A., Przybyłowicz, W. and Vladykin, N.V. (2014) Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts – The Ary-Bulak ongonite massif. Lithos, 202–203, 317–303.Google Scholar
Agangi, A., Gucsik, A., Nishido, H., Ninagawa, K. and Kamenetsky, V.S. (2016) Relation between cathodoluminescence and trace-element distribution of magmatic topaz from the Ary-Bulak massif, Russia. Mineralogical Magazine, 80(5), 881899.Google Scholar
Akizuki, M., Hampar, M.S. and Zussman, J. (1979) An explanation of anomalous optical properties of topaz. Mineralogical Magazine, 43, 237241.Google Scholar
Albarède, F. (2004) The stable isotope geochemistry of copper and zinc. Pp. 409427 in: Geochemistry of Non-Traditional Stable Isotopes (Johnson, C.M., Beard, B.L. and Albarede, F., editors). Reviews in Mineralogy & Geochemistry, 55. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Alberico, A., Ferrando, S., Ivaldi, G. and Ferraris, G. (2003) X-ray single-crystal structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China) – Structural foundation of the correlation between cell parameters and fluorine content. European Journal of Mineralogy, 15, 875881.Google Scholar
Alkmim, F.F. and Marshak, S. (1998) Transamazonian orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research, 90, 2958.Google Scholar
Babinski, M., Chemale, F., van Schumus, W.R. (1995) The Pb/Pb age of Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Research, 72, 235245.Google Scholar
Barton, M.D. (1982) The thermodynamic properties of topaz solid solutions and some petrologic applications. American Mineralogist, 67, 956974.Google Scholar
Beny, J.M. and Piriou, B. (1987) Vibrational spectra of single-crystal topaz. Physics and Chemistry of Minerals, 15, 148154.Google Scholar
Boggs, S.J., Kwon, Y.-I., Goles, G.G., Rusk, B.G., Krinsley, D. and Seyedolali, A. (2002) Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. Journal of Sedimentary Research, 72, 408415.Google Scholar
Breiter, K., Gardenová, N., Vaculovič, T. and Kanický, V. (2013) Topaz as an important host for Ge in granites and greisens. Mineralogical Magazine, 77, 403417.Google Scholar
Dorr II, J.V.N. (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U.S. Geological Survey Professional Paper 641-A. United States Government Printing Office, Washington D.C., USA, 109 pp.Google Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Pp. 313 in: Program and Abstracts of the 19 th General Meeting of the International Mineralogical Association, Kobe, Japan.Google Scholar
Frelinger, S.N., Ledvina, M.D., Kyle, J.R. and Zhao, D. (2015) Scanning electron microscopy cathodoluminescence of quartz: principles, techniques and applications in ore geology. Ore Geology Reviews, 65, 840852.Google Scholar
Gaft, M., Nagli, L., Reisfeld, R., Panczer, G. and Brestel, M. (2003) Time-resolved luminescence of Cr3+ in topaz Al2SiO4(OH,F)2. Journal of Luminescence, 102–103, 349356.Google Scholar
Gaft, M., Reisfeld, R. and Panczer, G. (2005) Modern Luminescence Spectroscopy of Minerals and Materials. Springer-Verlag, Heidelberg, Germany, 356 pp.Google Scholar
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., Rosenzweig, A. and King, V.T. (1997) Dana's New Mineralogy (8th edition). John Wiley & Sons, New York, USA, 1819 pp.Google Scholar
Gandini, A.L. (1994) Mineralogia, inclusões fluidas e aspetos genéticos do topázio imperial da região de Ouro Preto, Minas Gerais. MSc dissertation, University of São Paulo, São Paulo, 212 pp.Google Scholar
Gatta, G.D., Nestola, F., Bromiley, G.D. and Loose, A. (2006) New insight into crystal chemistry of topaz: a multi-methodological study. American Mineralogist, 91, 18391846.Google Scholar
Götte, T., Pettke, T., Ramseyer, K., Koch-Müller, M. and Mullis, J. (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: a fingerprint of growth dynamics. American Mineralogist, 96, 802813.Google Scholar
Götze, J. (2000) Cathodoluminescence in applied geosciences. Pp. 457477 in: Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer-Verlag, Heidelberg, Germany.Google Scholar
Götze, J. (2012) Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microscopy and Microanalysis, 18, 12701284.Google Scholar
Harris, P.G. (1954) The distribution of germanium among coexisting phases of partly glassy rocks. Geochimica et Cosmochimica Acta, 5, 185195.Google Scholar
Holuj, F. and Quick, S.M. (1968) ESR spectrum of Fe3+ in topaz. II. Superhyperfine structure. Canadian Journal of Physics, 46, 10871099.Google Scholar
Isogami, M. and Sunagawa, I. (1975) X-ray topographic study of a topaz crystal. American Mineralogist, 60, 889897.Google Scholar
Johan, Z., Oudin, E. and Picot, P. (1983). Analogues germanifères et gallifères des silicates et oxydes dans les gisements de zinc des Pyrénées centrales, France; argutite et carboirite, deux nouvelles espèces minerales. Tschermaks Mineralogische un Petrographische Mitteilungen, 31, 97119.Google Scholar
Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R. and Nalini, H.A. Jr. (2013) The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, Southeast Brazil. Precmbrian Research, 231, 157173.Google Scholar
Leroy, J.L., Rodríguez-Rios, R. and Dewonck, S. (2002) The topaz-bearing rhyolites from the San Luis Potosi area (Mexico): characteristics of the lava and growth conditions of topaz. Bulletin de la Société Géologique de France, 173, 579588.Google Scholar
Machado, N. and Carneiro, M. (1992) U-Pb evidence of Late Archean tectonothermal activity in southern São Francisco shield, Brazil. Canadian Journal of Earth Sciences, 29, 23412346.Google Scholar
Machado, N., Noce, C.M., Ladeira, E.A. and Oliveira, O.A.B. (1992) U-Pb geochronology of the Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil. Geological Society of America Bulletin, 104, 12211227.Google Scholar
Marshall, D. and Walton, L. (2007) Topaz. Pp. 161–168 in: Geology of Gem Deposits (Groat, L.A., editor). Short Course Series, 37. Mineralogical Association of Canada, Vancouver, British Columbia, Canada.Google Scholar
Misra, K.C. (2012) Introduction to Geochemistry: Principles and Applications. Wiley-Blackwell, New Jersey, 452 pp.Google Scholar
Morteani, G., Bello, R.M.S., Gandini, A.L. and Preinfalk, C. (2002) P, T, X conditions of crystallization of Imperial Topaz from Ouro Preto (Minas Gerais, Brazil): fluid inclusions, oxygen isotope thermometry and phase relations. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 455466.Google Scholar
Noce, C.M., Machado, N. and Teixeira, W. (1998) U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (Southern São Francisco Craton): age constraints for Archaean and Paleoproterozoic magmatism and metamorphism. Revista Brasileira de Geociências, 28, 95102.Google Scholar
Northrup, P.A. and Reeder, R.J. (1994) Evidence for the importance of growth-surface structure to trace element incorporation in topaz. American Mineralogist, 79, 11671175.Google Scholar
Olsen, D.R. (1971) Origin of topaz deposits near Ouro Preto, Minas Gerais, Brazil. Economic Geology, 66, 627631.Google Scholar
Pinheiro, M.V.B., Fantini, C., Krambrock, K., Persiano, A.I.C., Dantas, M.S.S. and Pimenta, M.A. (2002) OH/F substitution in topaz studied by Raman spectroscopy. Physical Review B, 65, 104301.Google Scholar
Prasad, P.S.R. and Gowd, T.N. (2003) FTIR spectroscopic study of hydroxyl ions in natural topaz. Journal of the Geological Society of India, 61, 202208.Google Scholar
Renger, F.E., Noce, C.M., Romano, A.W. and Machado, N. (1995) Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos, 2, 111.Google Scholar
Rusk, B.G., Lowers, H.A. and Reed, M.H. (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology, 36, 547.Google Scholar
Schlüter, J., Geisler, T., Pohl, D. and Stephan, T. (2010) Krieselite, AL2GeO4(F,OH)2: a new mineral from the Tsumeb mine, Namibia, representing the Ge analogue of topaz. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 3340.Google Scholar
Schott, S., Rager, H., Schürmann, K. and Taran, M. (2003) Spectroscopic study of natural gem-quality “Imperial” topazes from Ouro Preto, Brazil. European Journal of Mineralogy, 15, 701706.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Silva, J.C. and Ferreira, C.M. (1987). Gemas do Brasil (Gems of Brazil). São Bernardo do Campo (SP), Brazil, 130 pp.Google Scholar
Skvortsova, V., Mironova-Ulmane, N., Trinkler, L. and Chikvaidze, G. (2013) Optical properties of natural topaz. Materials Science and Engineering, 49, 14.Google Scholar
Stevens-Kalceff, M.A. (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineralogical Magazine, 73, 585605.Google Scholar
Tarashchan, A.N., Taran, M.N., Rager, H. and Iwanuch, W. (2006) Luminescence spectroscopic study of Cr3+ in Brazilian topazes from Ouro Preto. Physics and Chemistry of Minerals, 32, 679690.Google Scholar
Thyer, J.R., Quick, S.M. and Holuj, F. (1967) ESR spectrum of Fe3+ in topaz: I. fine structure. Canadian Journal of Physics, 45, 35973610.Google Scholar
Van der Kerkhof, A.M., Kronz, A., Simon, K. and Scherer, T. (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway). Contributions to Mineralogy and Petrology, 146, 637652.Google Scholar
Wasim, M., Zafar, W.A., Tufail, M., Arif, M., Daud, M. and Ahmad, A. (2011) Elemental analysis of topaz from northern areas of Pakistan and assessment of induced radioactivity level after neutron irradiation for color induction. Journal of Radioanalytical and Nuclear Chemistry, 287, 821826.Google Scholar
Wu, C.-Z., Liu, S.-H., Gu, L.-X., Zhang, Z.-Z. and Lei, R.-X. (2011) Formation mechanism of the lanthanide tetrad effect for a topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. Journal of Asian Earth Sciences, 42, 903916.Google Scholar
Wunder, B., Rubie, D.C., Ross II, C.R., Medenbach, O., Seifert, F. and Schreyer, W. (1993) Synthesis, stability, and properties of Al2SiO4(OH)2: a full hydrated analogue of topaz. American Mineralogist, 78, 285297.Google Scholar
Wunder, B., Andrut, M. and Wirth, R. (1999) High-pressure synthesis and properties of OH-rich topaz. European Journal of Mineralogy, 11, 803813.Google Scholar
Zhang, R.Y., Liou, J.G. and Shu, J.F. (2002) Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. American Mineralogist, 87, 445453.Google Scholar