Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T05:59:09.691Z Has data issue: false hasContentIssue false

Ferri-fluoro-leakeite: a second occurrence at Bratthagen (Norway), with new data on Zn partitioning and the oxo component in Na amphiboles

Published online by Cambridge University Press:  05 July 2018

R. Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy
M. Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
R. Kristiansen
Affiliation:
PO Box 32, N-1650 Sellebakk, Norway
*

Abstract

A second occurrence of ferri-fluoro-leakeite has been identified in the Bratthagen nepheline syenite pegmatite (Vestfold County, Norway). With respect to the holotype found at the Verkhnee Espe deposit (Akjailyautas Mountains, Kazakhstan; Cámara et al., 2010), it is closer to the ideal composition because of its larger Li and Mg contents and the absence of an oxo-component; however, it has a significant Zn content (0.29 a.p.f.u.). The ideal formula of ferri-fluoro-leakeite is ANaBNa2 C(Mg2Fe2 3+Li)TSi8O22WF2 and the empirical formula derived from electron-microprobe analysis and single-crystal structure refinement for the sample used here is A(Na0.68K0.32)S=1.00BNa2.00 C(Mg1.69Mn0.25 2+Fe0.24 2+Zn0.29Al0.23Fe1.50 3+Ti0.02Li0.78)S=5.00TSi8O22W(F1.59(OH)0.41)S=2.00. Unitcell data are a = 9.788(2), b = 17.826(3), c = 5.282(1) Å, β = 104.195(5)°, V = 893.5 (3) Å3, Z = 2. Crystal-chemical analysis shows that Li is ordered at the M(3) site and Zn is ordered mainly at the M(2) site, confirming previous findings for Li-bearing amphiboles. The new data also make quantification of the oxo component in Na amphiboles possible.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berge, S.A. (2011) Micheelsenitt – et nytt mineral for Norge. Stein (Magasin for Populærgeologi), 38, 1213.Google Scholar
Brøgger, W.C. (1897) Die Eruptivgesteine des Kristianiagebietes III. Das Ganggefolge des Lardalits. Videnskabsselskabet Skrifter. I. Matematisk- Naturvidenskablig Klasse 1897, No.6. Christiana, Oslo, 377 pp.Google Scholar
Bruker, (2003) SAINT-NT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cámara, F., Hawthorne, F.C., Ball, N.A., Bekenova, G., Stepanov, A.V. and Kotel’nikov, P. (2010) Fluoroleakeite, NaNa2(Mg2Fe3+ 2Li)Si8O22F2, a new mineral of the amphibole group from the Verkhnee Espe deposit, Akjailyautas Mountains, Eastern Kazakhstan District, Kazakhstan: description and crystal structure. Mineralogical Magazine, 74, 521528.CrossRefGoogle Scholar
Dahlgren, S. (2010) The Larvik plutonic complex: the larvikite and nepheline syenite plutons and their pegmatites. Pp. 26–37 in: The Langesundsfjord - history, geology, pegmatites, minerals (A.O. Larsen, editor). Bode Verlag, Salzhemmendorf, Germany.Google Scholar
Hawthorne, F.C. and Grundy, H.D. (1977) The crystal chemistry of the amphiboles. III: Refinement of the crystal structure of a sub-silicic hastingsite. Mineralogical Magazine, 41, 4350.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Ungaretti, L. and Grice, J.D. (1992) Leakeite, NaNa2(Mg2Fe3+2Li)Si8O22(OH)2, a new alkali amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 77, 11121115.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Cannillo, E. and Smelik, E.A. (1994) The mechanism of [6]Li incorporation in amphiboles. American Mineralogist, 79, 443451.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. The Canadian Mineralogist, 34, 577593.Google Scholar
Hawthorne, F.C., Ball, N.A. and Czamanske, G.K. (2010) Ferro-obertiite, Na Na2 (Fe2+ 3 Fe3+Ti) Si8 O22O2, a new mineral species of the amphibole group from Coyote Peak, Humboldt County, California. The Canadian Mineralogist, 48, 301306.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R. (co-chairs), Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Kristiansen, R. (2013). Surkhobitt fra Bratthagen i Lågendalen. Norsk Bergverksmuseum, Skrift, 50, 8992.Google Scholar
Larsen, A.O. (1988). Contributions to the mineralogy of Norway. No.68. Helvite group minerals from syenite pegmatites in the Oslo region, Norway. Norsk Geologisk Tidsskrift, 68, 119124.Google Scholar
Larsen, A.O. (2010) Renowned syenite pegmatite localities in the Larvik plutonic complex. Pp. 4663 in: The Langesundsfjord - History, Geology, Pegmatites, Minerals (A.O. Larsen, editor). Bode Verlag, Salzhemmendorf, Germany.Google Scholar
Larsen, A.O. (2013) Contributions to the mineralogy of the syenite pegmatites in the Larvik plutonic complex. Norsk Bergverksmuseum, Skrift, 50, 101109.Google Scholar
Larsen, A.O., Raade, G. and Sæbø, P.Chr. (1992) Lorenzenite from the Bratthagen nepheline syenite pegmatites. Lågendalen, Oslo region, Norway. Norsk Geologisk Tidsskrift, 72, 381384.Google Scholar
Mineev, D.A., Lavrishcheva, T.I. and Bykova, A.V. (1970) Yttrian bastnaesite, a product of the alteration of gagarinite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 99, 328332.[in Russian].Google Scholar
Oberti, R., Hawthorne, F.C., Ungaretti, L. and Cannillo, E. (1993) The behaviour of Mn in amphiboles: Mn in richterite. European Journal of Mineralogy, 5, 4351.CrossRefGoogle Scholar
Oberti, R., Caballero, J.M., Ottolini, L., Lopez-Andres, S. and Herreros, V. (2000) Sodic-ferripedrizite, a new monoclinic amphibole bridging the magnesiumiron- manganese-lithium and the sodium-calcium group. American Mineralogist, 85, 578585.CrossRefGoogle Scholar
Oberti, R., Cámara, F., Ottolini, L. and Caballero, J.M. (2003) Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. European Journal of Mineralogy, 15, 309319.CrossRefGoogle Scholar
Oberti, R., Della Ventura, G. and Cámara, F. (2007a) New amphibole compositions: natural and synthetic. Pp. 89–123 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007b) Long-range order in amphiboles. Pp. 125–171 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Piilonen, P., LaLonde, A.E., McDonald, A.M., Gault, R.A. and Larsen, A.O. (2003) Insight into astrophyllite group minerals. Nomenclature, composition and development of a standardized general formula. The Canadian Mineralogist, 41, 126.CrossRefGoogle Scholar
Piilonen, P.C., McDonald, A.M., Poirier, G., Rowe, R. and Larsen, A.O. (2012) The mineralogy and crystal chemistry of alkaline pegmatites in the Larvik Plutonic Complex, Oslo rift valley, Norway. Part 1. Magmatic and secondary zircon: implications for petrogenesis from trace-element geochemistry. Mineralogical Magazine, 76, 649672.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(rZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Raade, G. and Larsen, A.O. (1980) Contributions to the mineralogy of Norway. No. 65. Polylithionite from syenite pegmatite at Vøra, Sandefjord, Oslo region, Norway. Norsk Geologisk Tidsskrift, 60, 117124.Google Scholar
Raade, G. and Mladeck, M.E. (1977) Parakeldyshite from Norway. The Canadian Mineralogist, 15, 102107.Google Scholar
Sæbø, P.Chr. (1965) Contributions to the mineralogy of Norway. 1: The first occurrence of the rare mineral barylite, Be2BaSi2O7, in Norway. 2: Note on a new occurrence of chrysoberyl in Norway. 3: The first occurrence of ramsayite, Na2Ti2Si2O9, in Norway. Unpublished thesis, University of Oslo, Norway.Google Scholar
Sæbø, P.Chr. (1966) Contributions to the mineralogy of Norway. No. 35. The first occurrences of the rare mineral barylite, Be2BaSi2O7, in Norway. Norsk Geologisk Tidsskrift, 46, 335348.Google Scholar
Sheldrick, G.M. (1998) SADABS User Guide. University of Göttingen, Göttingen, Germany.Google Scholar
Sokolova, E., Abdu, Y., Hawthorne, F.C., Stepanov, A.V., Bekenova, G.K. and Kotel’nikov, P.E. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. I. A new Ti-silicate mineral from the Verkhnee Espe Deposit, Akjailyautas Mountains, Kazakhstan. Mineralogical Magazine, 73, 847854.CrossRefGoogle Scholar
Stepanov, A.V. and Sverov, E.A. (1961) Gagarinite: a new rare-earth mineral. Doklady Akademii Nauk SSSR, 141, 12901293.Google Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L. and Hawthorne, F.C. (2012a) Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, a new minerial from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure. Mineralogical Magazine, 76, 3744.CrossRefGoogle Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L., Sokolova, E., Hawthorne, F.C. and Dobrovol’skaya, E.A. (2012b) Tarbagataite, a new astrophyllite-group mineral species frm the Verkhnee espe deposit, Akjailyautas mountains, Kazakhstan: description and crystal structure. The Canadian Mineralogist, 50, 159168.CrossRefGoogle Scholar
Supplementary material: File

Oberti et al. supplementary material

Table 6. Observed and calculated structure factors

Download Oberti et al. supplementary material(File)
File 169.5 KB