Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:23:51.241Z Has data issue: false hasContentIssue false

Ferriakasakaite-(La) and ferriandrosite-(La): new epidote-supergroup minerals from Ise, Mie Prefecture, Japan

Published online by Cambridge University Press:  02 January 2018

Mariko Nagashima*
Affiliation:
Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
Daisuke Nishio-Hamane
Affiliation:
The Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
Norimitsu Tomita
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
Tetsuo Minakawa
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
Sachio Inaba
Affiliation:
Inaba-Shinju Corporation, Minami-ise, Mie 516-0109, Japan
*

Abstract

The new REE-rich, monoclinic, epidote-supergroup minerals ferriakasakaite-(La) and ferriandrosite-(La), found in tephroite calcite veinlets cutting the stratiform ferromanganese deposit from the Shobu area, Ise City, Mie Prefecture, Japan, were studied using electron microprobe analysis and single-crystal X-ray diffraction methods. Ferriakasakaite-(La), ideally A1CaA2LaM1Fe3+M2AlM3Mn2+(SiO4)(Si2O7)O(OH) (Z = 2, space group P21/m), has a new combination of dominant cations at A1(Ca) and M3(Mn2+), which are the key sites to determine a root name for epidote-supergroup minerals. The unit-cell parameters are a = 8.8733(2), b = 5.7415(1), c = 10.0805(3) Å, β = 113.845(2)° and V = 469.73(2) Å3. According to the structural refinement (R1 = 3.13%), the determined structural formula is A1(Ca0.54Mn2+0.46)A2[(La0.48Ce0.20Pr0.07Nd0.18Gd0.02)Σ0.95Ca0.05]M1(Fe0.423+V0.343+Al0.18Ti0.064+)M2(Al0.96Fe0.043+)M3(Mn0.502+Fe0.432+Mg0.07)(SiO4)(Si2O7)O(OH). Ferriandrosite-(La), ideally A1Mn2+A2LaM1Fe3+M2AlM3Mn2+(SiO4)(Si2O7)O(OH) (Z = 2, space group P21/m), is the M1Fe3+ analogue of androsite. The unit-cell parameters are a = 8.8779(1), b = 5.73995(1), c = 10.0875(2) Å, β = 113.899(1)° and V = 469.97(2) Å3, and the structural formula is A1(Mn0.562+Ca0.44)A2[(La0.49Ce0.20Pr0.08Nd0.19Gd0.02)Σ0.97Ca0.03]M1(Fe0.403+V0.283+Al0.20Fe0.052+Ti0.074+)M2(Al0.97Fe0.033+)M3(Mn0.502+Fe0.402+Mg0.10)(SiO4)(Si2O7)O(OH) (R1 = 2.93%). The two new minerals, which are compositionally very similar overall, are distinguished by occupancy of A1, Ca vs. Mn2+. The structural properties of these minerals depend not only on the REE content at A2, but also on the Mn content at A1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastasiou, P. and Langer, K. (1977) Synthesis and physical properties of piemontite Ca2Al3-pMn3+ p (Si2O7/SiO4/O/OH). Contributions to Mineralogy and Petrology, 60, 225245.CrossRefGoogle Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Heuss-Assbischler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.CrossRefGoogle Scholar
Baur, H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Bermanec, V., Armbruster, T., Oberhänsli, R. and Zebec, V. (1994) Crystal chemistry of Pb-and REE-rich piemontite from Nezilovo, Macedonia. Schweizerische Mineralogische und Petrographische Mitteilungen, 74, 321328.Google Scholar
Bonazzi, P. and Menchetti, S. (1995) Monoclinic members of the epidote group: effects of the Al $ Fe3+ $ Fe2+ substitution and of the entry of REE3+. Mineralogy and Petrology, 53, 133153.CrossRefGoogle Scholar
Bonazzi, P. and Menchetti, S. (2004) Manganese in monoclinic members of the epidote group: piemontite and related minerals. Pp. 495552. in: Epidotes (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 56. Mineralogical Society of America and the Geochemical Society. Chantilly, Virginia, USA.Google Scholar
Bonazzi, P., Menchetti, S. and Palenzona, A. (1990) Strontiopiemontite, a new member of the epidote group from Val Graveglia, Liguria, Italy. European Journal of Mineralogy, 2, 519523.CrossRefGoogle Scholar
Bonazzi, P., Garbarino, C. and Menchetti, S. (1992) Crystal chemistry of piemontites: REE-bearing piemontite from Monte Brugiana, Alpi Apuane, Italy. European Journal of Mineralogy, 4, 2333.CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S. and Reinecke, T. (1996) Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece. American Mineralogist, 81, 735742.CrossRefGoogle Scholar
Bonazzi, P., Holtstam, D., Bindi, L., Nysten, P. and Capitan, G. (2009) Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Västra Götaland, Sweden. American Mineralogist, 94, 121134.CrossRefGoogle Scholar
Bruker (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cenki-Tok, B., Ragu, A., Armbruster, T., Chopin, S. and Medenbach, O. (2006) New Mn-and rare-earth-rich epidote-group minerals in metacherts: manganiandrosite-( Ce) and vanadoandrosite-(Ce). European Journal of Mineralogy, 18, 569582.CrossRefGoogle Scholar
Chukanov, N.V., Göttlicher, J., Möckel, S., Sofer, Z., Van, K.V. and Belakovskiy, D.I.. (2010) Åskagenite-(Nd), Mn2+NdAl2Fe3+(Si2O7)(SiO4)O2, a new mineral of the epidote supergroup. New Data on Minerals, 45, 1722.Google Scholar
Comodi, P. and Zanazzi, P. F. (1997) The pressure behavior of clinozoisite and zoisite: An X-ray diffraction study. American Mineralogist, 82, 6168.CrossRefGoogle Scholar
Dollase, W.A. (1968) Refinement and comparison of the structures of zoisite and clinozoisite. American Mineralogist, 53, 18821898.Google Scholar
Dollase, W.A. (1971) Refinement of the crystal structures of epidote, allanite and hancockite. American Mineralogist, 56, 447464.Google Scholar
Franks, F. (Editor) (1973) Water: A Comprehensive Treatise, Vol. 2. Plenum, New York.Google Scholar
Franz, G. and Liebscher, A. (2004) Physical and chemical properties of the epidote minerals-an introduction. Pp. 182. in: Epidotes (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 56. Mineralogical Society of America and the Geochemical Society. Chantilly, Virginia, USA.Google Scholar
Fujinaga, K., Nozaki, T., Nishiuchi, T., Kuwahara, K. and Kato, Y. (2006) Geochemistry and origin of Ananai stratiform manganese deposit in the Northern Chichibu Belt, Central Shikoku, Japan. Resource Geology, 56, 399414.CrossRefGoogle Scholar
Fujinaga, K., Nozaki, T., Nakayama, K. and Kato, Y. (2011) Rare earth resource potential of the Aki strata-bound Fe-Mn deposit in the Northern Shimanto Belt, central Shikoku, Japan. Shigen-Chishitsu, 61, 111.Google Scholar
Gieré, R. and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. Pp. 431493. in: Epidotes (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 56. Mineralogical Society of America and the Geochemical Society. Chantilly, Virginia, USA.Google Scholar
Giuli, G., Bonazzi, P. and Menchetti, S. (1999) Al-Fe disorder in synthetic epidotes: a single-crystal X-ray diffraction study. American Mineralogist, 84, 933936.CrossRefGoogle Scholar
Hoshino, M., Kimata, M., Nishida, N., Kyono, A., Shimizu, M. and Takizawa, S. (2005) The chemistry of allanite from the Daibosatsu Pass, Yamanashi, Japan. Mineralogical Magazine, 69, 403423.CrossRefGoogle Scholar
Hoshino, M., Kimata, M., Nishida, N., Kyono, A. and Shimizu, M. (2008) Crystal chemical significance of chemical zoning in dissakisite-(Ce). Physics and Chemistry of Minerals, 35, 5970.CrossRefGoogle Scholar
Hoshino, M., Kimata, M., Chesner, C.A., Nishida, N. and Shimizu, M. (2009) First report of natural oxyallanite: oxidation and dehydration during welding of volcanic tuff. Abstracts of the Annual Meeting of Japan Association of Mineralogical Sciences 2009 p. 72.Google Scholar
Hoshino, M., Kimata, M., Chesner, C.A., Nishida, N., Shimizu, M. and Akasaka, T. (2010) Crystal chemistry of volcanic allanites indicative of naturally induced oxidation-dehydration. Mineralogy and Petrology, 99, 133141.CrossRefGoogle Scholar
Ito, T., Morimoto, N. and Sadanaga, R. (1954) On the structure of epidote. Acta Crystallographica, 7, 5359.CrossRefGoogle Scholar
Izumi, F. and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State Phenomena, 130, 1520.CrossRefGoogle Scholar
Kartashov, P.M., Ferraris, G., Ivaldi, G., Sokolova, E. and McCammon, C.A. (2002) Ferriallanite-(Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and Mössbauer study. The Canadian Mineralogist, 40, 16411648.CrossRefGoogle Scholar
Kato, Y., Fujinaga, K., Nozaki, T., Osawa, H., Nakamura, K. and Ono, R. (2005) Rare earth, major and trace elements in the Kunimiyama ferromanganese deposit in the Northern Chichibu belt, Central Shikoku, Japan. Resource Geology, 55, 291299.CrossRefGoogle Scholar
Katoh, K. (1995) The Chichibu Belt of Watarai-cho and Omiya-cho, Mie Prefecture in the eastern Kii Peninsula, Mie Prefecture, Japan. Journal of the Geological Society of Japan, 101, 211227.CrossRefGoogle Scholar
Langer, K., Tillmanns, E., Kersten, M., Almen, H. and Arni, R.K. (2002) The crystal chemistry of Mn3+ in the clino-and orthozoisite structure types, Ca2M3+ 3 [OH/O/SiO4/Si2O7]: a structural and spectroscopic study of some natural piemontites and “thulites” and their synthetic equivalents. Zeitschrift für Kristallographie, 217, 563580.Google Scholar
Lavina, B., Carbonin, S., Russo, U. and Tumiati, S. (2006) The crystal structure of dissakisite-(La) and structural variations after annealing of radiation damage. American Mineralogist, 91, 104110.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Miyawaki, R., Tokoyama, K., Matsubara, S., Tsutsumi, Y. and Goto, A. (2008) Uedaite-(Ce), a new member of the epidote group with Mn at the A site, from Shodoshima, Kagawa Prefecture, Japan. European Journal of Mineralogy, 20, 261269.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA3 for threedimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12571276.CrossRefGoogle Scholar
Moriyama, T., Miyawaki, R., Yokoyama, K., Matsubara, S., Hirano, H., Murakami, H. and Watanabe, Y. (2010) Wakefieldite-(Nd), a new neodymium vanadate mineral in the Arase Stratiform ferromanganese deposit, Kochi Prefecture, Japan. Resource Geology, 61, 101110.CrossRefGoogle Scholar
Nagashima, M. and Akasaka, M. (2004) An X-ray Rietveld study of piemontite on the join Ca2Al3Si3O12(OH)-Ca2Mn3+ 3 Si3O12(OH) formed by hydrothermal synthesis. American Mineralogist, 89, 11191129.CrossRefGoogle Scholar
Nagashima, M., Geiger, C.A. and Akasaka, M. (2009) A crystal-chemical investigation of clinozoisite synthesized along the join Ca2Al3Si3O12(OH)– Ca2Al2CrSi3O12(OH). American Mineralogist, 94, 13511360.CrossRefGoogle Scholar
Nagashima, M., Armbruster, T., Akasaka, M. and Minakawa, T. (2010) Crystal chemistry of Mn2+-, Sr-rich and REE-bearing piemontite from the Kamisugai mine in the Sambagawa metamorphic belt, Shikoku, Japan. Journal of Mineralogical and Petrological Sciences, 105, 142150.CrossRefGoogle Scholar
Nagashima, M., Imaoka, T. and Nakashima, K. (2011) Crystal chemistry of Ti-rich ferriallanite-(Ce) from Cape Ashizuri, Shikoku Island, Japan. American Mineralogist, 96, 18701877.CrossRefGoogle Scholar
Nagashima, M., Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2013) Vanadoallanite-(La): a new epidote-supergroup mineral from Ise, Mie Prefecture, Japan. Mineralogical Magazine, 77, 27392752.CrossRefGoogle Scholar
Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2013) Iseite, Mn2Mo3O8, a new mineral from Ise, Mie Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108, 3741.CrossRefGoogle Scholar
Orlandi, P. and Pasero, M. (2006) Allanite-(La) from Buca della Vena mine, Apuan Alps, Italy, an epidote-group mineral. The Canadian Mineralogist, 44, 6368.CrossRefGoogle Scholar
Pautov, L.A., Khorov, P.V., Ignatenko, K.I., Sokolova, E.V. and Nadezhina, T.N. (1993) Khristovite-(Ce)– (Ca, REE)REE(Mg, Fe)AlMnSi3O11(OH)(F,O): a new mineral in the epidote group. Proceedings of the Russian Mineralogical Society, 122, 103111.Google Scholar
Peacor, D.R. and Dunn, P.J. (1988) Dollaseite-(Ce) (magnesium orthite redefined): structure refinement and implications from F + M2+ substitutions in epidote-group minerals. American Mineralogist, 73, 838842.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rouse, R. and Peacor, D. (1993) The crystal structure of dissakisite-(Ce), the Mg analogue of allanite-(Ce). The Canadian Mineralogist, 31, 153157.Google Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany. Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Škoda, R., Cempírek, J., Filip, J., Novák, M., Veselovský , F. and Čtvrtlík, R. (2012) Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Åskagen, Sweden. American Mineralogist, 97, 983988.CrossRefGoogle Scholar
Supplementary material: File

Nagashima et al. supplementary material

Table 3

Download Nagashima et al. supplementary material(File)
File 34.3 KB
Supplementary material: File

Nagashima et al. supplementary material

Table 4

Download Nagashima et al. supplementary material(File)
File 33.3 KB