Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:58:15.773Z Has data issue: false hasContentIssue false

Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden

Published online by Cambridge University Press:  05 July 2018

A. G. Christy
Affiliation:
Department of Earth and Marine Sciences, Building 47, Australian National University, Canberra, ACT 0200, Australia
K. Gatedal
Affiliation:
Mining Museum of Nordmark, SE-682 93 Nordmarkshyttan, Sweden

Abstract

We report preliminary petrographic and mineral chemical data for a rock hosting an unusual mineral assemblage from Långban, Värmland, Sweden. The rock is a two feldspar-scapolite-spessartine-romeite skarn. The bulk composition and high degree of enrichment in Pb, Sb and As suggest that the rock was formed by reaction between a pre-existing Mn skarn containing the chalcophiles and a potassic granite, with loss of silica, alkalis and CO2. The alkali feldspar is a Pb-rich hyalophane, averaging Or63Ab19Cs15Pb03, the plagioclase feldspar a Pb-rich labradorite, An48Ab48Or02Pb02, and the scapolite a 'mizzonite' (Ca/(Na+Ca) = 0.66—0.70). These minerals show their highest Pb contents recorded in nature to date: up to a maximum of 5.7 wt.% PbO in the hyalophane, 2.1% PbO in the plagioclase, and 5.3% PbO in the scapolite. Laser ablation ICP-MS of a scapolite grain detected substantial Be up to 1.7 wt.% BeO (0.6 Be per 12 tetrahedral cations), as well as Pb up to 7.05 wt.% PbO. The Be is incorporated into scapolite via the coupled exchange [Be(OH)][Al(CO3,SO4)]—1. This is the first documentation of scapolite as the major repository for Be in a rock.

The romeite also contains substantial Pb, and shows extensive solid solution towards end-members containing Fe3+, Ti and Sb3+. In some analyses, the dominant end-members are and its Pb analogue rather than (Ca,Pb)2Sb2O7. Complex exsolution textures are displayed in the hyalophane, by hancockite-epidote, romeite-bindheimite and hedyphane-johnbaumite. Ca-rich scapolite and hancockite appear to be new minerals for the Långban deposit.

The mineralogy appears consistent with the regional peak conditions of P = 3 kbar, T > 600°C. Several potential thermobarometers for Mn-rich skarns are identified in this rock.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, B.G. (1983) Temperature-xCO2 stability relations and phase equilibria of a calcic carbonate scapolite. Geochimica et Cosmochimica Acta, 47, 351362.CrossRefGoogle Scholar
Baker, J. and Newton, R.C. (1994) Standard thermo-dynamic properties of meionite, Ca4Al6Si6O24CO3, from experimental phase equilibrium data. American Mineralogist, 79, 474484.Google Scholar
Baker, J. and Newton, R.C. (1995) Experimentally determined activity-composition relations for Ca-rich scapolites in the system CaAl2Si2O8-NaAlSi3O8-CaCO3 at 7 kbar. American Mineralogist, 80, 744751.CrossRefGoogle Scholar
Barthelemy, D. (2000) WWW Mineral Database: http://www.webmineral.com (accessed July 2005).Google Scholar
Belokoneva, E.L., Sokoleva, N.V. and Urusov, V.S. (1993) Scapolites — crystalline structures of marialite (Me11) and meionite (Me88) — spatial group as a function of composition. Kristallografiya, 38, 5277.Google Scholar
Benna, P., Tribaudino, M. and Bruno, E. (1996) The structure of ordered and disordered lead feldspar (PbAl2Si2O8). American Mineralogist, 81, 13371343.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T., Brugger, J., Criddle, A.J. and Graeser, S. (2003) Tripuhyite, FeSbO4, revisited. Mineralogical Magazine, 67, 3146.CrossRefGoogle Scholar
Brugger, J., Gieré, R., Graeser, S. and Meisser, N. (1997) The crystal chemsitry of romeité. Contributions to Mineralogy and Petrology, 127, 136146.CrossRefGoogle Scholar
Carmichael, I.S.E., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology. McGraw Hill, New York, 739 pp.Google Scholar
Čech, F., Mosar, Z. and Povondra, P. (1971) A green lead-containing orthoclase. Tschermaks Mineralogische und Petrologische Mitteilungen, 15, 213231.CrossRefGoogle Scholar
Černý, P., Smith, J.V., Mason, R.A. and Delaney, J.S. (1984) The geochemistry and petrology of feldspar crystallization in the Vežná pegmatite, Czechoslovakia. The Canadian Mineralogist, 22, 631651.Google Scholar
Christy, A.G. and Grew, E.S. (2004) Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite, Part 2: A chemographic study of Be content as a function of P, T, assemblage and FeMg-1 exchange. American Mineralogist, 89, 327338.CrossRefGoogle Scholar
Christy, A.G., Grew, E.S., Mayo, S.C., Yates, M.G. and Belakovskiy, D.I. (1998) Hyalotekite, (Ba, Pb, K)4(Ca,Y)2(B,Be,Si)4Si8O28F, a tectosilicate related to scapolite: new structure refinement, possible phase transitions and a short-range ordered 3b super-structure. Mineralogical Magazine, 62, 7792.CrossRefGoogle Scholar
Christy, A.G., Tabira, Y., Holscher, A., Grew, E.S. and Schreyer, W. (2002) Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite, Part 1: Experiments, TEM and XRD. American Mineralogist, 87, 11041112.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussmann, J. (2004) Rock-Forming Minerals, Volume 4B: Silica Minerals, Feldspathoids and the Zeolites (2nd edition). The Geological Society, London.Google Scholar
Dunn, P.J. (1995) Franklin and Sterling Hill, New Jersey: the World's Most Magnificent Mineral Deposits. Published by the author.Google Scholar
Filatov, S.K., Krivovichev, S.V., Burns, P.C. and Vergasova, L.P. (2004) Crystal structure of filatovite, K(Al,Zn)2(As,Si)2O8, the first arsenate of the feldspar group. European Journal of Mineralogy, 16, 537544.CrossRefGoogle Scholar
Gillberg, M. (1960) A lead-bearing variety of pargasite from Langban, Sweden. Arkiv för Mineralogi och Geologi, 2, 425430.Google Scholar
Goldsmith, J.R. and Newton, R.C. (1977) Scapolite-plagioclase stability relationships at high pressures and temperatures in the system NaAlSi3O8-CaAl2Si2O8-CaCO3-CaSO4 . American Mineralogist, 62, 10631081.Google Scholar
Grew, E.S. (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Pp. 487549 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Hassan, I. and Buseck, P.R. (1988) HRTEM characterization of scapolite solid solutions. American Mineralogist, 73, 119134.Google Scholar
Hawthorne, F.C. (2002) The use of end-member charge arrangements in defining new species and hetero-valent substitutions in complex minerals. The Canadian Mineralogist, 40, 699710.CrossRefGoogle Scholar
Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333444 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309343.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (1994) Hancockite from Jakobsberg, Filipstad, Sweden: the second world occurrence. Mineralogical Magazine, 58, 172174.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (1999) Långban: the Mines, their Minerals, Geology and Explorers. Raset Förlag, Swedish Museum of Natural History, Stockholm.Google Scholar
Holtstam, D., Nysten, P. and Gatedal, K. (1998) Parageneses and compositional variations of Sb oxyminerals from Långban-type deposits in Värmland, Sweden. Mineralogical Magazine, 62, 395407.CrossRefGoogle Scholar
International Mineralogical Association (1998) The nomenclature of minerals: a compilation of IMA reports. Pp.148149: Appendix: symbols of the rock-forming minerals. http://www.mineralogicalassociation.ca/doc/abstracts/ima98/ima98.htm.Google Scholar
Jambor, J.L and Roberts, A.C. (1997) New mineral names. American Mineralogist, 82, 12611264.Google Scholar
Kalt, A., Schreyer, W., Ludwig, T., Prowatke, S., Bernhardt, H.-J. and Ertl, A. (2001) Complete solid solution between magnesian schorl and lithian excess-boron olenite in a pegmatite from the Koralpe (eastern Alps, Austria). European Journal of Mineralogy, 13, 11911205.CrossRefGoogle Scholar
Levien, L. and Papike, J.J. (1976) Scapolite crystal chemistry: aluminum-silicon distributions, carbonate group disorder, and thermal expansion. American Mineralogist, 61, 864877.Google Scholar
Lin, S.B. and Burley, B.J. (1973a) Crystal structure of a sodium- and chlorine-rich scapolite. Acta Crystallogaphica, B29, 12721278.CrossRefGoogle Scholar
Lin, S.B. and Burley, B.J. (1973b) The crystal structure of meionite. Acta Crystallogaphica, B29, 20242026.CrossRefGoogle Scholar
Lin, S.B. and Burley, B.J. (1975) The crystal structure of an intermediate scapolite-wernerite. Acta Crystallogaphica, B31, 18061814.CrossRefGoogle Scholar
Lindqvist, B. and Charalampides, G. (1987) Stability and kinetic studies of synthetic solid solutions in the kentrolite-melanotekite series. Geologiska Foreningens i Stockholm Forhandlingar, 109, 7382.CrossRefGoogle Scholar
Mason, R.A. (1982) Trace-element distributions be-tween the perthite phases of alkali feldspars from pegmatites. Mineralogical Magazine, 45, 101 — 106.CrossRefGoogle Scholar
Matsubara, S., Kato, A., Shimizu, M., Sekiuchi, K. and Suzuki, Y (1996) Romeite from the Gozaisho mine, Iwaki, Japan. Mineralogical Journal, 18, 155160.CrossRefGoogle Scholar
McSwiggen, P.L., Morey, G.B. and Cleland, J.M. (1994) Occurrence and genetic implications of hyalophane in manganese-rich iron formation. Mineralogical Magazine, 58, 387399.CrossRefGoogle Scholar
Mellini, M. and Merlino, S. (1979) Versiliaite and apuanite - derivative structures related to schafarzikite. American Mineralogist, 64, 12351242.Google Scholar
Mellini, M., Merlino, S. and Orlandi, P. (1979) Versiliaite and apuanite, 2 new minerals from the Apuan Alps, Italy. American Mineralogist, 64, 12301234.Google Scholar
Moore, P.B. (1970) Mineralogy and chemistry of Langban-type deposits in Bergslagen, Sweden. Mineralogical Record, 1, 154172.Google Scholar
Newton, R.C. and Goldsmith, J.R. (1975) Stability of scapolite meionite (3CaAl2Si2O8.CaCO3) at high pressures and storage of CO2 in deep crust. Contributions to Mineralogy and Petrology, 49, 4962.CrossRefGoogle Scholar
Newton, R.C. and Goldsmith, J.R. (1976) Stability of end-member scapolites - 3NaAlSi3Os.NaCl, 3CaAl2Si2O8.CaCO3, 3CaAl2Si2O8.CaSO4 . Zeitschrift für Kristallographie, 143, 333353.Google Scholar
Oterdoom, W.H. and Gunter, W.D. (1983) Activity models for plagioclase and CO3-scapolites: an analysis of fluids and laboratory data. American Journal of Science, 283-A (Orville volume), 255283.Google Scholar
Papike, J.J. and Stephenson, N.C. (1966) The crystal structure of mizzonite: a calcium- and carbonate-rich scapolite. American Mineralogist, 51, 10141027.Google Scholar
Papike, J.J. and Zoltai, T. (1965) The crystal structure of a marialite scapolite. American Mineralogist, 50, 641655.Google Scholar
Perseil, E.-A. and Smith, D.C. (1995) Sb-rich titanite in the manganese concentrations at St Marcel-Praborna, Aosta Valley, Italy: Petrography and crystal-chemistry. Mineralogical Magazine, 59, 717734.CrossRefGoogle Scholar
Phakey, P.P. and Ghose, S. (1972) Scapolite: observation of an antiphase domain structure. Nature Physical Science, 238, 7880.CrossRefGoogle Scholar
Plimer, I.R. (1976) A plumbian feldspar pegmatite associated with the Broken Hill orebodies, Australia. Neues Jahrbuch für Mineralogie Monatshefte, 272-288.Google Scholar
Rouse, R.C., Dunn, P.J., Peacor, D.R. and Wang, L. (1998) Structural studies of the natural antimony pyrochlores 1. Mixed-valency, cation site splitting, and symmetry reduction in lewisite. Journal of Solid State Chemistry, 141, 562569.CrossRefGoogle Scholar
Seto, Y., Shimobayashi, N., Miyake, A. and Kitamura, M. (2004) Composition and I4/m-P42/m phase transition in scapolite solid solutions. American Mineralogist,, 89, 257265.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sherriff, B.L., Sokolova, E.V., Kabalov, Y.K., Jenkins, D.M., Kunath-Fandrei, G., Goetz, S., Jäger, C. and Schneider, J. (2000) Meionite: Rietveld structure-refinement, 29Si MAS and 29A1 SATRAS NMR spectroscopy, and comments on the marialitemeionite series. The Canadian Mineralogist,, 38, 12011213.CrossRefGoogle Scholar
Smith, D.C. and Perseil, E.-A. (1997) Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal chemistry. Mineralogical Magazine, 61, 655669.CrossRefGoogle Scholar
Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals (2nd edition, revised and extended) vol. 1: Crystal Structures, Physical, Chemical and Microtextural Properties. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.CrossRefGoogle Scholar
Steele, I.M., Hutcheon, I.D. and Smith, J.V. (1977) Ion microprobe analysis of plagioclase feldspar (Ca1-xNaxAl2-xSi2+xO8) for major, minor and trace elements. Pp. 515525 in: 8th International Congress on X-ray Optics and Microanalysis. Pendell Publishing Co., Midland, MI, USA.Google Scholar
Stevenson, R.K. (1985) An occurrence of amazonite, gahnite and sphalerite near Portman Lake, Northwest Territories. Geological Survey of Canada Paper, 85-1A, 2328.Google Scholar
Stevenson, R.K. and Martin, R.F. (1986) Implications of the presence of amazonite in the Broken Hill and Geco metamorphosed sulfide deposits. The Canadian Mineralogist, 24, 729745.Google Scholar
Stevenson, R.K. and Martin, R.F. (1988) Amazonitic K-feldspar in granodiorite at Portman Lake, Northwest Territories: indications of low f(O2), low f(S2) and rapid uplift. The Canadian Mineralogist, 26, 10371048.Google Scholar
Teertstra, D.K. and Sherriff, B.L. (1996) Scapolite cell-parameter trends along the solid-solution series. American Mineralogist,, 81, 169180.CrossRefGoogle Scholar
Teertstra, D.K. and Sherriff, B.L. (1997) Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chemical Geology, 136, 233260.CrossRefGoogle Scholar
Teertstra, D.K., Schindler, M., Sherriff, B.L. and Hawthorne, F.C. (1999) Silvialite, a new sulfate-dominant member of the scapolite group with an Al-Si composition near the I4/m-P42/n phase transition. Mineralogical Magazine, 63, 321329.CrossRefGoogle Scholar
Vergasova, L.P., Krivovichev, S.V., Britvin, S.N., Burns, P.C. and Ananiev, V.V. (2004) Filatovite, K(Al,Zn)2(As,Si)2O8, a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. European Journal of Mineralogy, 16, 533536.CrossRefGoogle Scholar