Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T02:53:45.145Z Has data issue: false hasContentIssue false

Experimental study in the Na2O–CaO–MgO–Al2O3–SiO2–CO2 system at 3 GPa: the effect of sodium on mantle melting to carbonate-rich liquids and implications for the petrogenesis of silicocarbonatites

Published online by Cambridge University Press:  05 July 2018

K. R. Moore*
Affiliation:
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK
*

Abstract

Melt compositions in equilibrium with peridotite assemblages were determined in the analogue system Na2O–CaO–MgO–Al2O3–SiO2–CO2 at 3 GPa with Ca/Ca + Mg = 0.56–0.43 and up to 6 wt.% Na2O. There is a greater compositional range generated isobarically over a larger temperature interval than in a sodium-absent system: increasing sodium content drives liquids to compositions with lower CaO and higher SiO2 concentrations. A positive correlation between silica and Na2O content of liquids produced at constant temperature is due to the depolymerization of silicate tetrahedra in the presence of monovalent cations, as in the volatile-free system. Liquids with Na2O >6 wt.% occur in association with wehrlites as the composition of diopsidic pyroxene expands towards enstatite with addition of Na2O, decreasing the orthopyroxene content of peridotite. The orthopyroxene-out curve intersects an enriched mantle solidus at 3 GPa where near-solidus liquids have Na2O = 7 1.5 wt.%. Sodium partitioning between a metaluminous liquid and clinopyroxene follows the jadeite partitioning models calculated for the dry silicate system but sodium partitions into peralkaline carbonated liquids as both the pyroxene and the carbonate molecules. The peralkaline liquids generated are essentially carbonated silicate melts that are analogous to silica-bearing carbonatites and silicocarbonatites from a range of possible metasomatized mantle sources.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.K. (1985) Fluids, melts, flowage and styles of eruption in alkaline ultramafic magmatism. Transactions of the Geological Society of South Africa, 88, 449457.Google Scholar
Bailey, D.K. (1989) Carbonate melt from the mantle in the volcanoes of south-east Zambia. Nature, 338, 415418.CrossRefGoogle Scholar
Bailey, D.K. (1990) Mantle carbonatite eruptions: crustal context and implications. Lithos, 26, 3742.CrossRefGoogle Scholar
Bailey, D.K. (1993) Carbonate magmas. Journal of the Geological Society, London, 150, 637651.CrossRefGoogle Scholar
Baker, M.B. and Wyllie, P.J. (1990) Liquid immiscibility in a nepheline-carbonate system at 25 kbar and implications for carbonatite origin. Nature, 346, 168170.CrossRefGoogle Scholar
Barker, D.S. and Nixon, P.H. (1989) High-Ca, lowalkali carbonatite volcanism at Fort Portal, Uganda. Contributions to Mineralogy and Petrology, 103, 166177.CrossRefGoogle Scholar
A.D., Beard, Downes, H., Vetrin, V., Kempton, P.D. and Maluski, H. (1996) Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia). Lithos, 39, 93-l 19.Google Scholar
Bell, K. and Dawson, J.B. (1994) Nd and Sr isotope systematics of the active carbonatite volcano, Oldoinyo Lengai.Pp. 100112. in: Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites (Bell, K. and Keller, J., editors). Springer Verlag, Berlin.Google Scholar
Bennett, S.L., Blundy, J. and Elliott, T. (2004) The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta, 68, 23352347.CrossRefGoogle Scholar
Blundy, J. and Dalton, J. (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 139, 356371.CrossRefGoogle Scholar
Blundy, J.D., Falloon, T.J., Wood, B.J. and Dalton, J.A. (1995) Sodium partitioning between clinopyroxene and silicate melts. Journal of Geophysical Research, 100, 1550115515.CrossRefGoogle Scholar
Bouabdellah, M., Hoernle, K., Kchit, A., Duggen, S., Hauff, F., Klügel, A., Lowry, D. and Beaudoin, G. (2010) Petrogenesis of the Eocene Tamazert continental carbonatites (Central High Atlas, Morocco): implications for a common source for the Tamazert and Canary and Cape Verde Island carbonatites. Journal of Petrology, 51, 16551686.CrossRefGoogle Scholar
Brady, A.E. (2010) The role of carbonate in diatremerelated magmatism. Unpublished PhD thesis, NUI Galway, Ireland. Brennan, J.M. and Watson, E.B. (1991) Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle P-T conditions. Geochimica et Cosmochimica Acta, 55, 22032214.Google Scholar
Brey, G.P., Bulatov, V.K., Girnis, A.V. and Lahaye, Y. (2008) Experimental melting of carbonated peridotite at 610. GPa. Journal of Petrology, 49, 797821.Google Scholar
Brooker, R.A. (1998) The effect of CiO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study. Journal of Petrology, 39, 19051915.Google Scholar
Brooker, R.A. and Kjarsgaard, B.A. (2011) Silicate– carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CiO2 at 0.12. 5 GPa with applications to carbonatite genesis. Journal of Petrology, 52, 12811305.Google Scholar
Chakmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89, 17521762.CrossRefGoogle Scholar
Chakmouradian, A.R. and Zaitsev, A.N. (2004) Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantlederived melts. Pp. 247291. in: Phoscorites and Carbonatites from Mantle to Mine: the Key example of the Kola Alkaline Province (Wall, F. and N, A.. Zaitsev, editors). Mineralogical Society Series, 10. Springer, London.Google Scholar
Coulson, I.M., Goodenough, K.M., Pearce, N.J.G. and Leng, M.J. (2003) Carbonatites and lamprophyres of the Gardar Province: a window to the sub-Gardar mantle? Mineralogical Magazine, 67, 855872.Google Scholar
Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The Interpretation of Igneous Rocks. G. Allen & Unwin, London. Dalton, J.A. and Presnall, D.C. (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CiO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology, 131, 123135.Google Scholar
Dalton, J.A. and Wood, B.J. (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119, 511525.CrossRefGoogle Scholar
Dasgupta, R., Hirschmann, M.H. and Smith, N.D. (2007) Partial melting experiments of peridotite + CiO2 at 3 GPa and Genesis of alkalic ocean island basalts. Journal of Petrology, 48, 20932124.CrossRefGoogle Scholar
Drüppel, K., Hoefs, J. and Okrusch, M. (2005) Fenitizing processes induced by ferrocarbonatite magmatism at Swartooisdrif, NW Namibia. Journal of Petrology, 46, 377406.CrossRefGoogle Scholar
Eggler, D.H. (1978) The effect of CiO2 upon partial melting of peridotite in the system Na2O–CaO– Al2O3–MgO-SiO2-CiO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CiO2 system. American Journal of Science, 278, 305343.CrossRefGoogle Scholar
Eggler, D.H. (1989) Carbonatites, primary melts, and mantle dynamics. Pp. 561579. in: Carbonatites-Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Girnis, A.V., Bulatov, V.K. and Brey, G.P. (2005) Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study. Petrology, 13, 115.Google Scholar
Girnis, A.V., Bulatov, V.K., Lahaye, Y. and Brey, G.P. (2006) Partitioning of trace elements between carbonate-silicate melts and mantle minerals: experiment and petrological consequences. Petrology, 14, 492514.CrossRefGoogle Scholar
Gittins, J. (1989) The origin and evolution of carbonatite magmas. Pp. 580600. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Gittins, J. and McKie, D. (1980) Alkalic carbonatite magmas: Oldoinyo Lengai and its wider applicability. Lithos, 13, 213215.CrossRefGoogle Scholar
Gudfinnsson, G.H. and Presnall, D.C. (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 38. GPa. Journal of Petrology, 46, 16451659.Google Scholar
Haggerty, S.E. (1989) Mantle metasomes and the kinship between carbonatites and kimberlites. Pp. 540560. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Hammouda, T. and Laporte, D. (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28, 283285.Google Scholar
Hauri, E.H., Shimuzu, N., Dieu, J.J. and Hart, S.R. (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature, 365, 221227.CrossRefGoogle Scholar
Hess, P.C. (1992) Phase equilibria constraints on the origin of ocean floor basalts. In: Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, 71, 67102.Google Scholar
Hirose, K. (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CiO2 in alkali-basalt magma generation. Geophysical Research Letters, 24, 28372840.CrossRefGoogle Scholar
Hirschmann, M.H. (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1, 1042, http://dx.doi.org/10.1029/2000GC000070. Keller, J. (1984) Geochemie und Magmenentwicklung im Kaiserstuhl. Fortschritte der Mineralogie, 62, 116118.Google Scholar
Kinzler, R.J. and Grove, T.L. (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. Earth and Planetary Science Letters, 115, 177195.Google Scholar
Kjarsgaard, B.A. and Hamilton, D.H. (1989) The genesis of carbonatites by immiscibility. Pp 388404. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Kushiro, I. (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. American Journal of Science, 275, 411431.CrossRefGoogle Scholar
Le Bas, M.J. (1989) Diversification of carbonatite. Pp. 428447. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sorensen, H. and Woolley, A.R. (2002) Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, UK.Google Scholar
Lee, W.-J. and Wyllie, P.J. (1997) Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa and variation in mantle melt compositions. Contributions to Mineralogy and Petrology, 127, 116.CrossRefGoogle Scholar
Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477493.Google Scholar
Mariano, A.N. and Roeder, P.L. (1983). Kerimasi: a neglected carbonatite volcano. Journal of Geology, 91, 449455.Google Scholar
McKenzie, D. (1985) The extraction of magma from the crust and mantle. Earth and Planetary Science Letters, 74, 8191.CrossRefGoogle Scholar
McKenzie, D. and O’Nions, R.K. (1991) Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 10211091.CrossRefGoogle Scholar
Meen, J.K., Ayers, J.C. and Fregeau, E.J. (1989) A model of mantle metasomatism by carbonated alkaline melts: trace element and isotopic compositions of mantle source regions of carbonatite and other continental igneous rocks. Pp. 464499. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43, 20492068.CrossRefGoogle Scholar
Moore, K.R. and Wood, B.J. (1998) The transition from carbonate to silicate melts in the CaO–MgO– SiO2-CiO2 system. Journal of Petrology, 39, 19431951.Google Scholar
Moore, K.R., Wall, F., Divaev, F.K. and Savatenkov, V.M. (2009) Mingling of carbonate and silicate magmas under turbulent flow conditions: Evidence from rock textures and mineral chemistry in subvolcanic carbonatite dykes, Chagatai, Uzbekistan, Lithos, 110, 6582.Google Scholar
Nelson, D.R., Chivas, A.R., Chappell, B.W. and McCulloch, M.T. (1988) Geochemical and isotope systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52, 117.CrossRefGoogle Scholar
Nielsen, T.F.D. and Sand, K.K. (2008) The Majuagaa kimberlite dyke, Maniitsoq region, West Greenland: constraints on an Mg-rich silicocarbonatite melt composition from groundmass mineralogy and bulk composition. The Canadian Mineralogist, 46, 10431061.CrossRefGoogle Scholar
Riley, T.R. (1994) Quaternary volcanism of the Rockeskyll Complex, West Eifel, Germany and the carbonatite-nephelinite-phonolite association. Unpublished PhD thesis, University of Bristol, UK. Rock, N.M.S. (1991) Lamprophyres. Blackie, Glasgow, UK. Schleicher, H., Kramm. U., Pernicka, E., Schidlowski, M., Schmidt, F., Subramanian, V., Todt, W. and Viladkar, S.G. (1998) Enriched subcontinental upper mantle beneath Southern India: evidence from Pb, Nd, Sr, and C-O isotopic studies on Tamil Nadu carbonatites. Journal of Petrology, 39, 17651785.Google Scholar
Schneider, M.E. and Eggler, D.H. (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 50, 711724.CrossRefGoogle Scholar
Shand, S.J. (1945) The present status of Dalys hypothesis of the alkaline rocks. American Journal of Science, 23-A, 495-507. Sweeney, R.J. (1994) Carbonatite melt compositions in the earths mantle. Earth and Planetary Science Letters, 128, 259270.Google Scholar
Takahashi, E. (1986) Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91, 93679382.CrossRefGoogle Scholar
Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A., Joyce, N. and Hoefs, J. (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47, 12611315.CrossRefGoogle Scholar
Thibault, Y., Edgar, A.D. and Lloyd, F.E. (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. American Mineralogist, 77, 784794.Google Scholar
Thompson, R.N., Smith, P.N., Gibson, S.A., Mattey, D.P. and Dickin, A.P. (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contributions to Mineralogy and Petrology, 143, 377395.CrossRefGoogle Scholar
Treiman, A.H. and Essene, E.J. (1983) Mantle eclogite and carbonate as sources of sodic carbonates and alkalic magmas. Nature, 302, 700703.CrossRefGoogle Scholar
Twyman, J.D. and Gittins, J. (1987) Alkalic carbonatite magmas: parental or derivative? Pp. 8594. in: Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., editors). Special Publications of the Geological Society, 30. The Geological Society, London.Google Scholar
Wallace, M.E. and Green, D.H. (1988) An experimental determination of primary carbonatite composition. Nature, 335, 343346.CrossRefGoogle Scholar
Walter, M.J. and Presnall, D.C. (1994) Melting behaviour of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. Journal of Petrology, 35, 329359.CrossRefGoogle Scholar
Watson, E.B. and Jurewicz, S.R. (1984) Behaviour of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. Journal of Geology, 92, 121131.CrossRefGoogle Scholar
White, B.S. and Wyllie, P.J. (1992) Solidus reactions in synthetic lherzolite-H2O-CiO2 from 2030. kbar, with implications to melting and metasomatism. Journal of Volcanology and Geothermal Research, 50, 117130.Google Scholar
Woolley, A.R. and Jones, G.C. (1987) The petrochemistry of the northern part of the Chilwa alkaline province, Malawi.Pp. 335355. in: Alkaline Igneous Rocks (Fitton, J.G. and, B. Upton, G.J., editors). Special Publications of the Geological Society, 30. The Geological Society, London.CrossRefGoogle Scholar
Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions and element distribution.Pp. 114. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Woolley, A.R. and Kjarsgaard, B.A. (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. The Canadian Mineralogist, 46, 741752.CrossRefGoogle Scholar
Woolley, A.R., Bergman, S.C., Edgar, A.D., Le Bas, M.J., Mitchell, R.H., Rock, N.M.S. and Scott Smith, B.H. (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilititc, and leucitic rocks. The Canadian Mineralogist, 34, 175186.Google Scholar
Wyllie, P.J., (1980) The origin of kimberlites. Journal of Geophysical Research, 85, 69026910.CrossRefGoogle Scholar
Wyllie, P.J. and Huang, W.L. (1975) Peridotite, kimberlite and carbonatite explained in the system CaO-MgO-SiO2-CiO2 . Geology, 3, 621624.2.0.CO;2>CrossRefGoogle Scholar