Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T23:24:19.105Z Has data issue: false hasContentIssue false

Experimental determination of melting relationships of beryl in the system BeO-Al2O3-SiO2-H2O between 10 and 25 kbar

Published online by Cambridge University Press:  05 July 2018

L. Cemič
Affiliation:
Institut für Mineralogie und Kristallographie, Technische Universität Berlin, D1000 Berlin
K. Langer
Affiliation:
Institut für Mineralogie und Kristallographie, Technische Universität Berlin, D1000 Berlin
G. Franz
Affiliation:
Institut für Angewandte Geophysik, Petrologie und Lagerstättenforschung, Technische Universität Berlin, D1000 Berlin

Abstract

The onset of melting of beryl + H2O was determined experimentally in the P-T range 10–25 kbar, 900 to 1200°C, by synthesis runs on the composition Al2Be3Si6O18. Beryl begins to melt incongruently to chrysoberyl, phenakite, and melt at temperatures slightly above 1000°C. At higher temperatures a divariant stability field exists where beryl, chrysoberyl, phenakite, and melt coexist due to the solubility of H2O in beryl and in the melt. The final disappearance of beryl was bracketed between 1050 and 1100°C at 10 kbar and at 1100°C between 10 and 20 kbar. The phases (analysed for Al and Si by electron microprobe) do not show major deviation from stoichiometric composition.

Type
Mineral Chemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, M.D. (1981) Ph.D. thesis, University of Chicago. Becker, K.H., Cemic, L., and Langer, K.E.O. E. (1983) Geochim. Cosmochim. Ada. 47, 1573-8.Google Scholar
Franz, G., and Morteani, G. (1981) Neues Jahrb. Mineral. Abh. 140, 273-99.Google Scholar
Ganguli, D. (1972) Neues Jahrb. Mineral. Mh.193-9.Google Scholar
Ganguli, D. and Saha, P. (1965) Trans. Indian Ceramic Soc. 24, 134-46.CrossRefGoogle Scholar
Miller, R.P., and Mercer, R.A. (1965) Mineral. Mag. 35, 250-76.Google Scholar
Munson, R.A. (1967) J. Am. Ceram. Soc. 50, 669-70.CrossRefGoogle Scholar
Neuhaus, A., and Steffen, R. (1970) Z. Phys. Chemie N. F. 73, 188-214.CrossRefGoogle Scholar
Okrusch, M. (1971) Z. Dt. Gemmol. Ges. 20, 114-24.Google Scholar
Pankrath, R. (1984) Diplomarbeit, Technische Universitat Berlin.Google Scholar
Peerdeman, S.A.G., Trappniers, J., and Schouten, A. (1980) High temperatures—high pressures. 12, 67-73.Google Scholar
van Valkenburg, A., and Weir, C.E. (1957) Geol. Soc. Am. Bull. 68, 1808-9.Google Scholar
Walther, J.V., and Helgeson, H.C. (1977) Am. J. Sci. 277, 1315-51.CrossRefGoogle Scholar
Wilson, W. (1964) J. Appl. Phys. 36, 268-70.CrossRefGoogle Scholar